Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010;10(6):453–60. https://doi.org/10.1038/nri2784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82. https://doi.org/10.1038/nri1785.
Article
CAS
PubMed
Google Scholar
Kapetanovic R, Fairbairn L, Downing A, Beraldi D, Sester DP, Freeman TC, et al. The impact of breed and tissue compartment on the response of pig macrophages to lipopolysaccharide. BMC Genomics. 2013;14(1):581. https://doi.org/10.1186/1471-2164-14-581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayala-Garcıa MA, Gonzalez Yebra B, Lopez Flores AL, Guanı GE. The major histocompatibility complex in transplantation. J Transp Secur. 2012;2012:842141–7. https://doi.org/10.1155/2012/842141.
Article
CAS
Google Scholar
Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36. https://doi.org/10.1038/nri3084.
Article
CAS
PubMed
Google Scholar
Shiina T, Hosomichi K, Inoko H, Kulski JK. The HLA genomic loci map: expression, interaction, diversity and disease. J Hum Genet. 2009;54(1):15–39. https://doi.org/10.1038/jhg.2008.5.
Article
CAS
PubMed
Google Scholar
Geffrotin C, Popescu CP, Cribiu EP, Boscher J, Renard C, Chardon P, et al. Assignment of MHC in swine to chromosome 7 by in situ hybridization and serological typing. Ann Genet. 1984;27(4):213–9.
CAS
PubMed
Google Scholar
Hammer SE, Ho CS, Ando A, Rogel-Gaillard C, Charles M, Tector M, et al. Importance of the major histocompatibility complex (swine leukocyte antigen) in swine health and biomedical research. Annu Rev Anim Biosci. 2020;8(1):171–98. https://doi.org/10.1146/annurev-animal-020518-115014.
Article
CAS
PubMed
Google Scholar
Rabin M, Fries R, Singer D, Ruddle FH. Assignment of the porcine major histocompatibility complex to chromosome 7 by in situ hybridization. Cytogenet Cell Genet. 1985;39(3):206–9. https://doi.org/10.1159/000132136.
Article
CAS
PubMed
Google Scholar
Renard C, Hart E, Sehra H, Beasley H, Coggill P, Howe K, et al. The genomic sequence and analysis of the swine major histocompatibility complex. Genomics. 2006;88(1):96–110. https://doi.org/10.1016/j.ygeno.2006.01.004.
Article
CAS
PubMed
Google Scholar
Renard C, Vaiman M, Chiannilkulchai N, Cattolico L, Robert C, Chardon P. Sequence of the pig major histocompatibility region containing the classical class I genes. Immunogenetics. 2001;53(6):490–50. https://doi.org/10.1007/s002510100348.
Article
CAS
PubMed
Google Scholar
Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S. Chromosome territories – a functional nuclear landscape. Curr Opin Cell Biol. 2006;18(3):307–16. https://doi.org/10.1016/j.ceb.2006.04.007.
Article
CAS
PubMed
Google Scholar
Misteli T. Beyond the sequence: cellular organization of genome function. Cell. 2007;128(4):787–0. https://doi.org/10.1016/j.cell.2007.01.028.
Article
CAS
PubMed
Google Scholar
Fraser J, Williamson I, Bickmore WA, Dostie J. An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol Mol Biol Rev. 2015;79(3):347–72. https://doi.org/10.1128/MMBR.00006-15.
Kempfer R, Pombo A. Methods for mapping 3D chromosome architecture. Nat Rev Genet. 2020;21(4):207–26. https://doi.org/10.1038/s41576-019-0195-2.
Article
CAS
PubMed
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93. https://doi.org/10.1126/science.1181369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502(7469):59–64. https://doi.org/10.1038/nature12593.
Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, et al. Massively multiplex single-cell Hi-C. Nat Methods. 2017;14(3):263–6. https://doi.org/10.1038/nmeth.4155.
Ramani V, Deng X, Qiu R, Lee C, Disteche CM, Noble WS, et al. Sci-Hi-C: a single-cell Hi-C method for mapping 3D genome organization in large number of single cells. Methods. 2020;170:61–8. https://doi.org/10.1016/j.ymeth.2019.09.012.
Tan L, Xing D, Chang CH, Li H, Xie XS. Three-dimensional genome structures of single diploid human cells. Science. 2018;361(6405):924–8. https://doi.org/10.1126/science.aat5641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME, Dekker J, et al. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell. 2019;176(6):1502–15. https://doi.org/10.1016/j.cell.2019.01.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. Identification of gene positioning factors using high-throughput imaging mapping. Cell. 2015;16(4):911–23. https://doi.org/10.1016/j.cell.2015.07.035.
Article
CAS
Google Scholar
Forsberg F, Brunet A, Ali TML, Collas P. Interplay of Lamin A and Lamin B LADs on the radial positioning of chromatin. Nucleus. 2019;10(1):7–20. https://doi.org/10.1080/19491034.2019.1570810.
Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, et al. Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci. 2000;113(9):1565–76. https://doi.org/10.1242/jcs.113.9.1565.
Article
CAS
PubMed
Google Scholar
Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol. 2007;179(6):1095–103. https://doi.org/10.1083/jcb.200710058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraser P, Bickmore W. Nuclear organization of the genome and the potential for gene regulation. Nature. 2007;447(7143):413–7. https://doi.org/10.1038/nature05916.
Article
CAS
PubMed
Google Scholar
Torabi K, Wangsa D, Ponsa I, Brown M, Bosch A, Vila-Casadesús M, et al. Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories. Chromosoma. 2017;126(5):655–7. https://doi.org/10.1007/s00412-017-0629-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solinhac R, Mompart F, Martin P, Robelin D, Pinton P, Iannuccelli E, et al. Transcriptomic and nuclear architecture of immune cells after LPS activation. Chromosoma. 2011;120(5):501–20. https://doi.org/10.1007/s00412-011-0328-7.
Article
CAS
PubMed
Google Scholar
Iannuccelli E, Mompart F, Gellin J, Lahbib-Mansais Y, Yerle M, Boudier T. NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments. Bioinformatics. 2010;26(5):696–7. https://doi.org/10.1093/bioinformatics/btq013.
Article
CAS
PubMed
Google Scholar
Kusza S, Flori L, Gao Y, Teillaud A, Hu R, Lemonnier G, et al. Transcription specificity of the class Ib genes SLA-6, SLA-7 and SLA-8 of the swine major histocompatibility complex and comparison with class Ia genes. Anim Genet. 2011;42(5):510–20. https://doi.org/10.1111/j.1365-2052.2010.02170.x.
Article
CAS
PubMed
Google Scholar
Lassadi I, Kamgoué A, Goiffon I, Tanguy-le-Gac N, Bystricky K. Differential chromosome conformations as hallmarks of cellular identity revealed by mathematical polymer modeling. PLoS Comput Biol. 2015;11(6):e1004306. https://doi.org/10.1371/journal.pcbi.1004306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Germier T, Kocanova S, Walther N, Bancaud A, Shaban HA, Sellou H, et al. Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys J. 2017;113(7):1383–94. https://doi.org/10.1016/j.bpj.2017.08.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanctôt C, Cheutin T, Cremer M, Cavalli G, Cremer T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet. 2007;8(2):104–15. https://doi.org/10.1038/nrg2041.
Article
CAS
PubMed
Google Scholar
Boyle S, Gilchrist S, Bridger JM, Mahy NL, Ellis JA, Bickmore WA. The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. J Hum Genet. 2001;10(3):211–9. https://doi.org/10.1093/hmg/10.3.211.
Article
CAS
Google Scholar
Murmann AE, Gao J, Encinosa M, Gautier M, Peter ME, Eils R, et al. Local gene density predicts the spatial position of genetic loci in the interphase nucleus. Exp Cell Res. 2005;311(1):14–26. https://doi.org/10.1016/j.yexcr.2005.07.020.
Article
CAS
PubMed
Google Scholar
Takizawa T, Meaburn KJ, Misteli T. The meaning of gene positioning. Cell. 2008;135(1):9–13. https://doi.org/10.1016/j.cell.2008.09.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finlan LE, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, et al. Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet. 2008;4(3):e1000039. https://doi.org/10.1371/journal.pgen.1000039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumaran RI, Spector D. A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol. 2008;180(1):51–65. https://doi.org/10.1083/jcb.200706060.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meaburn KJ, Misteli T. Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol. 2008;180(1):39–50. https://doi.org/10.1083/jcb.200708204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lunney JK, Ho CS, Wysocki M, Smith DM. Molecular genetics of the swine major complex, the SLA complex. Dev Comp Immunol. 2009;33(3):362–74. https://doi.org/10.1016/j.dci.2008.07.002.
Article
CAS
PubMed
Google Scholar
Muller H, Gil J, Drinnenberg IA. The impact of centromeres on spatial genome architecture. Trends Genet. 2019;35(8):565–78. https://doi.org/10.1016/j.tig.2019.05.003.
Article
CAS
PubMed
Google Scholar
Nishimura K, Komiya M, Hori T, Itoh T, Fukagawa T. 3D genomic architecture reveals that neocentromeres associate with heterochromatin regions. J Cell Biol. 2018;218(1):134–49. https://doi.org/10.1083/jcb.201805003.
Article
CAS
PubMed
Google Scholar
Eckersley-Maslin MA, Spector DL. Random monoallelic expression: regulating gene expression one allele at a time. Trends Genet. 2014;30(6):237–44. https://doi.org/10.1016/j.tig.2014.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193–6. https://doi.org/10.1126/science.1245316.
Article
CAS
PubMed
Google Scholar
Jiang Y, Zhang NR, Li M. SCALE: modelling allele-specific gene expression by single-cell RNA sequencing. Genome Biol. 2017;18(1):74. https://doi.org/10.1186/s13059-017-1200-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christova R, Jones T, Wu PJ, Bolzer A, Costa-Pereira AP, Watling D, et al. P-STAT1 mediates higher-order chromatin remodeling of the human MHC in response to IFNγ. J Cell Sci. 2007;120(18):3262–70. https://doi.org/10.1242/jcs.012328.
Article
CAS
PubMed
Google Scholar
Ottaviani D, Lever E, Mitter R. Reconfiguration of genomic anchors upon transcriptional activation of the human major histocompatibility complex. Genome Res. 2008;18(11):1778–86. https://doi.org/10.1101/gr.082313.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Gittelman RM, Lu Y, Liu X, Li MD, Ling F, et al. Evolution of DNAase I hypersensitive sites in MHC regulatory regions of Primates. Genetics. 2018;209(2):579–89. https://doi.org/10.1534/genetics.118.301028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sullivan KE, Reddy ABM, Dietzmann K, Suriano AR, Kocieda VP, Stewart M, et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol. 2007;27(14):5147–60. https://doi.org/10.1128/MCB.02429-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sklar MD, Tereba A, Chen BD, Walker WS. Transformation of mouse bone marrow cells by transfection with a human oncogene related to c-myc is associated with the endogenous production of macrophage colony stimulating factor 1. J Cell Physiol. 1985;125(3):403–12. https://doi.org/10.1002/jcp.1041250307.
Article
CAS
PubMed
Google Scholar
Van Goethem E, Poincloux R, Gauffre F, Maridonneau-Parini I, Le Cabec V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J Immunol. 2010;184(2):1049–61. https://doi.org/10.4049/jimmunol.0902223.
Article
CAS
PubMed
Google Scholar
Velten FW, Renard C, Rogel-Gaillard C, Vaiman M, Schrezenmeir J, Chardon P. Spatial arrangement of pig MHC class I sequences. Immunogenetics. 1999;49(11-12):919–30. https://doi.org/10.1007/s002510050575.
Article
CAS
PubMed
Google Scholar
Rogel-Gaillard C, Bourgeaux N, Billault A, Vaiman M, Chardon P. Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements. Cytogenet Cell Genet. 1999;85(3-4):205–11. https://doi.org/10.1159/000015294.
Article
CAS
PubMed
Google Scholar
Osoegawa K, de Jong PJ, Frengen E, Ioannou PA. Construction of bacterial artificial chromosome (BAC/PAC) libraries. Curr Protoc Mol Biol. 2001. Chapter 5:Unit 5.9. https://doi.org/10.1002/0471142727.mb0509s55.
Yerle M, Goureau A, Gellin J, Le Tissier P, Moran C. Rapid mapping of cosmid clones on pig chromosomes by fluorescence in situ hybridization. Mamm Genome. 1994;5(1):34–7. https://doi.org/10.1007/BF00360565.
Article
CAS
PubMed
Google Scholar
Bonnet A, Bevilacqua C, Benne F, Bodin L, Cotinot C, Liaubet L, et al. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by laser capture microdissection. BMC Genomics. 2011;12(1):417. https://doi.org/10.1186/1471-2164-12-417.
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45–445. https://doi.org/10.1093/nar/29.9.e45.