Fisher RP. Getting to S: CDK functions and targets on the path to cell-cycle commitment. F1000Res. 2016;5. https://doi.org/10.12688/f1000research.9463.1.
Johnson A, Skotheim JM. Start and the restriction point. Curr Opin Cell Biol. 2013;25:717–23.
CAS
PubMed
Google Scholar
Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. 1998;2:65–73.
CAS
PubMed
Google Scholar
Costanzo M, Schub O, Andrews B. G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol. 2003;23:5064–77.
CAS
PubMed
PubMed Central
Google Scholar
Ferrezuelo F, Colomina N, Futcher B, Aldea M. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biol. 2010;11:R67.
PubMed
PubMed Central
Google Scholar
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9:3273–97.
CAS
PubMed
PubMed Central
Google Scholar
Wijnen H, Landman A, Futcher B. The G(1) cyclin Cln3 promotes cell cycle entry via the transcription factor Swi6. Mol Cell Biol. 2002;22:4402–18.
CAS
PubMed
PubMed Central
Google Scholar
Futcher B. Transcriptional regulatory networks and the yeast cell cycle. Curr Opin Cell Biol. 2002;14:676–83.
CAS
PubMed
Google Scholar
Jorgensen P, Tyers M. How cells coordinate growth and division. Curr Biol. 2004;14:R1014–27.
CAS
PubMed
Google Scholar
Stillman DJ. Dancing the cell cycle two-step: regulation of yeast G1-cell-cycle genes by chromatin structure. Trends Biochem Sci. 2013;38:467–75.
CAS
PubMed
PubMed Central
Google Scholar
Flick K, Wittenberg C. Multiple pathways for suppression of mutants affecting G1-specific transcription in Saccharomyces cerevisiae. Genetics. 2005;169:37–49.
CAS
PubMed
PubMed Central
Google Scholar
Dončić A, Falleur-Fettig M, Skotheim JM. Distinct interactions select and maintain a specific cell fate. Mol Cell. 2011;43:528–39. https://doi.org/10.1016/j.molcel.2011.06.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eser U, Falleur-Fettig M, Johnson A, Skotheim JM. Commitment to a cellular transition precedes genome-wide transcriptional change. Mol Cell. 2011;43:515–27. https://doi.org/10.1016/j.molcel.2011.06.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bean JM, Siggia ED, Cross FR. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics. 2005;171:49–61.
CAS
PubMed
PubMed Central
Google Scholar
Breeden L, Nasmyth K. Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell. 1987;48:389–97.
CAS
PubMed
Google Scholar
Koch C, Moll T, Neuberg M, Ahorn H, Nasmyth K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science. 1993;261:1551–7.
CAS
PubMed
Google Scholar
Hendler A, Medina EM, Buchler NE, de Bruin RAM, Aharoni A. The evolution of a G1/S transcriptional network in yeasts. Curr Genet. 2018;64:81–6. https://doi.org/10.1007/s00294-017-0726-3.
Article
CAS
PubMed
Google Scholar
Andrews BJ, Moore LA. Interaction of the yeast Swi4 and Swi6 cell cycle regulatory proteins in vitro. Proc Natl Acad Sci USA. 1992;89:11852–6.
CAS
PubMed
PubMed Central
Google Scholar
Lowndes NF, Johnson AL, Breeden L, Johnston LH. SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature. 1992;357:505–8.
CAS
PubMed
Google Scholar
de Bruin RAM, Kalashnikova TI, Chahwan C, McDonald WH, Wohlschlegel J, Yates J, et al. Constraining G1-specific transcription to late G1 phase: the MBF-associated corepressor Nrm1 acts via negative feedback. Mol Cell. 2006;23:483–96.
PubMed
Google Scholar
Wittenberg C, Reed SI. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene. 2005;24:2746–55.
CAS
PubMed
Google Scholar
Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. 2007;282:5101–5.
CAS
PubMed
Google Scholar
Soniat M, Chook YM. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem J. 2015;468:353–62. https://doi.org/10.1042/BJ20150368.
Article
CAS
PubMed
Google Scholar
Mosammaparast N, Pemberton LF. Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol. 2004;14:547–56.
CAS
PubMed
Google Scholar
Xu D, Farmer A, Chook YM. Recognition of nuclear targeting signals by Karyopherin-β proteins. Curr Opin Struct Biol. 2010;20:782–90.
CAS
PubMed
PubMed Central
Google Scholar
Görlich D, Seewald MJ, Ribbeck K. Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J. 2003;22:1088–100.
PubMed
PubMed Central
Google Scholar
Lee SJ, Matsuura Y, Liu SM, Stewart M. Structural basis for nuclear import complex dissociation by RanGTP. Nature. 2005;435:693–6.
CAS
PubMed
Google Scholar
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife. 2015;4.
Mackmull M, Klaus B, Heinze I, Chokkalingam M, Beyer A, Russell RB, et al. Landscape of nuclear transport receptor cargo specificity. Mol Syst Biol. 2017;13. https://doi.org/10.15252/msb.20177608.
Thakar K, Karaca S, Port SA, Urlaub H, Kehlenbach RH. Identification of CRM1-dependent Nuclear Export Cargos Using Quantitative Mass Spectrometry. Mol Cell Proteomics. 2013;12:664–78.
CAS
PubMed
Google Scholar
Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90:1051–60.
CAS
PubMed
Google Scholar
Kutay U, Güttinger S. Leucine-rich nuclear-export signals: born to be weak. Trends Cell Biol. 2005;15:121–4.
CAS
PubMed
Google Scholar
Quan Y, Ji Z-L, Wang X, Tartakoff AM, Tao T. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics. 2008;7:1254–69.
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.
CAS
PubMed
Google Scholar
Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.
CAS
PubMed
Google Scholar
Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell. 1998;95:737–40.
CAS
PubMed
Google Scholar
Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.
CAS
PubMed
Google Scholar
Meyer T, Begitt A, Lödige I, van Rossum M, Vinkemeier U. Constitutive and IFN-gamma-induced nuclear import of STAT1 proceed through independent pathways. EMBO J. 2002;21:344–54.
CAS
PubMed
PubMed Central
Google Scholar
Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998;17:554–64.
CAS
PubMed
PubMed Central
Google Scholar
Kim K-Y, Truman AW, Caesar S, Schlenstedt G, Levin DE. Yeast Mpk1 cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator. Mol Biol Cell. 2010;21:1609–19.
CAS
PubMed
PubMed Central
Google Scholar
Sidorova JM, Mikesell GE, Breeden LL. Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol Biol Cell. 1995;6:1641–58.
CAS
PubMed
PubMed Central
Google Scholar
Taba MR, Muroff I, Lydall D, Tebb G, Nasmyth K. Changes in a SWI4,6-DNA-binding complex occur at the time of HO gene activation in yeast. Genes Dev. 1991;5:2000–13.
CAS
PubMed
Google Scholar
Harreman MT, Kline TM, Milford HG, Harben MB, Hodel AE, Corbett AH. Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J Biol Chem. 2004;279:20613–21.
CAS
PubMed
Google Scholar
Geymonat M, Spanos A, Wells GP, Smerdon SJ, Sedgwick SG. Clb6/Cdc28 and Cdc14 regulate phosphorylation status and cellular localization of Swi6. Mol Cell Biol. 2004;24:2277–85.
CAS
PubMed
PubMed Central
Google Scholar
Queralt E, Igual JC. Cell cycle activation of the Swi6p transcription factor is linked to nucleocytoplasmic shuttling. Mol Cell Biol. 2003;23:3126–40.
CAS
PubMed
PubMed Central
Google Scholar
Feng W, Hopper AK. A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomycescerevisiae. Proc Natl Acad Sci USA. 2002;99:5412–7.
CAS
PubMed
PubMed Central
Google Scholar
Conde J, Fink GR. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci USA. 1976;73:3651–5.
CAS
PubMed
PubMed Central
Google Scholar
Vallen EA, Hiller MA, Scherson TY, Rose MD. Separate domains of KAR1 mediate distinct functions in mitosis and nuclear fusion. J Cell Biol. 1992;117:1277–87.
CAS
PubMed
Google Scholar
Mosammaparast N, Jackson KR, Guo Y, Brame CJ, Shabanowitz J, Hunt DF, et al. Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. J Cell Biol. 2001;153:251–62.
CAS
PubMed
PubMed Central
Google Scholar
Taberner FJ, Igual JC. Yeast karyopherin Kap95 is required for cell cycle progression at Start. BMC Cell Biol. 2010;11:47.
PubMed
PubMed Central
Google Scholar
Stade K, Ford CS, Guthrie C, Weis K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell. 1997;90:1041–50.
CAS
PubMed
Google Scholar
Finn EM, DeRoo EP, Clement GW, Rao S, Kruse SE, Kokanovich KM, et al. A subset of FG-nucleoporins is necessary for efficient Msn5-mediated nuclear protein export. Biochim Biophys Acta. 2013;1833:1096–103. https://doi.org/10.1016/j.bbamcr.2012.12.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulga N, Roberts P, Gu Z, Spitz L, Tabb MM, Nomura M, et al. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J Cell Biol. 1996;135:329–39.
CAS
PubMed
Google Scholar
Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol. 2004;6:197–206.
CAS
PubMed
Google Scholar
Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989;340:245–6.
CAS
PubMed
Google Scholar
Cagney G, Uetz P, Fields S. High-throughput screening for protein-protein interactions using two-hybrid assay. Meth Enzymol. 2000;328:3–14.
CAS
Google Scholar
Neville M, Rosbash M. The NES-Crm1p export pathway is not a major mRNA export route in Saccharomyces cerevisiae. EMBO J. 1999;18:3746–56.
CAS
PubMed
PubMed Central
Google Scholar
Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96:9112–7.
CAS
PubMed
PubMed Central
Google Scholar
Li C, Goryaynov A, Yang W. The selective permeability barrier in the nuclear pore complex. Nucleus. 2016;7:430–46.
CAS
PubMed
PubMed Central
Google Scholar
Mohr D, Frey S, Fischer T, Güttler T, Görlich D. Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J. 2009;28:2541–53.
CAS
PubMed
PubMed Central
Google Scholar
Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, et al. Simple rules for passive diffusion through the nuclear pore complex. J Cell Biol. 2016;215:57–76.
CAS
PubMed
PubMed Central
Google Scholar
James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996;144:1425–36.
CAS
PubMed
PubMed Central
Google Scholar
Sherman F. [1] Getting started with yeast. In: Methods in Enzymology: Elsevier; 1991. p. 3–21. https://doi.org/10.1016/0076-6879(91)94004-V.
Chapter
Google Scholar
Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2:31–4.
CAS
PubMed
Google Scholar
Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989;122:19–27.
CAS
PubMed
PubMed Central
Google Scholar
Belanger KD, Walter D, Henderson TA, Yelton AL, O’Brien TG, Belanger KG, et al. Nuclear localisation is crucial for the proapoptotic activity of the HtrA-like serine protease Nma111p. J Cell Sci. 2009;122(Pt 21):3931–41.
CAS
PubMed
Google Scholar
Breeden LL. Alpha-factor synchronization of budding yeast. Meth Enzymol. 1997;283:332–41.
CAS
Google Scholar
Miller JH. Experiments in molecular genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory; 1972.
Google Scholar