Frye RA: Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and biophysical research communications. 2000, 273 (2): 793-798. 10.1006/bbrc.2000.3000.
Article
CAS
PubMed
Google Scholar
Saunders LR, Verdin E: Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007, 26 (37): 5489-5504. 10.1038/sj.onc.1210616.
Article
CAS
PubMed
Google Scholar
Michan S, Sinclair D: Sirtuins in mammals: insights into their biological function. The Biochemical journal. 2007, 404 (1): 1-13. 10.1042/BJ20070140.
Article
PubMed Central
CAS
PubMed
Google Scholar
North BJ, Marshall BL, Borra MT, Denu JM, Verdin E: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Molecular cell. 2003, 11 (2): 437-444. 10.1016/S1097-2765(03)00038-8.
Article
CAS
PubMed
Google Scholar
Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA: Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Molecular and cellular biology. 2003, 23 (9): 3173-3185. 10.1128/MCB.23.9.3173-3185.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaquero A: The conserved role of sirtuins in chromatin regulation. The International journal of developmental biology. 2009, 53 (2-3): 303-322. 10.1387/ijdb.082675av.
Article
CAS
PubMed
Google Scholar
Finkel T, Deng CX, Mostoslavsky R: Recent progress in the biology and physiology of sirtuins. Nature. 2009, 460 (7255): 587-591. 10.1038/nature08197.
Article
PubMed Central
CAS
PubMed
Google Scholar
Donmez G, Guarente L: Aging and disease: connections to sirtuins. Aging cell. 9 (2): 285-290.
Smith JJ, Torigoe SE, Maxson J, Fish LC, Wiley EA: A class II histone deacetylase acts on newly synthesized histones in Tetrahymena. Eukaryotic cell. 2008, 7 (3): 471-482. 10.1128/EC.00409-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wiley EA, Myers T, Parker K, Braun T, Yao MC: Class I histone deacetylase Thd1p affects nuclear integrity in Tetrahymena thermophila. Eukaryotic cell. 2005, 4 (5): 981-990. 10.1128/EC.4.5.981-990.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jeter JR, Pavlat WA, Cameron IL: Changes in the nuclear acidic proteins and chromatin structure in starved and refed tetrahymena. Experimental cell research. 1975, 93 (1): 79-88. 10.1016/0014-4827(75)90425-5.
Article
CAS
PubMed
Google Scholar
Cole ES, Frankel J: Conjugal blocks in Tetrahymena pattern mutants and their cytoplasmic rescue. II. janus A. Developmental biology. 1991, 148 (2): 420-428. 10.1016/0012-1606(91)90261-Z.
Article
CAS
PubMed
Google Scholar
Davis MC, Ward JG, Herrick G, Allis CD: Programmed nuclear death: apoptotic-like degradation of specific nuclei in conjugating Tetrahymena. Developmental biology. 1992, 154 (2): 419-432. 10.1016/0012-1606(92)90080-Z.
Article
CAS
PubMed
Google Scholar
Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY, Bode AM, Dong Z: Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Molecular cell. 2006, 23 (1): 121-132. 10.1016/j.molcel.2006.05.023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, Lenormand P, Rousselle JC, Namane A, England P: AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. The EMBO journal. 2010, 29 (9): 1585-1599. 10.1038/emboj.2010.43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Grubisha O, Smith BC, Denu JM: Small molecule regulation of Sir2 protein deacetylases. The FEBS journal. 2005, 272 (18): 4607-4616. 10.1111/j.1742-4658.2005.04862.x.
Article
CAS
PubMed
Google Scholar
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. The Journal of biological chemistry. 2002, 277 (47): 45099-45107. 10.1074/jbc.M205670200.
Article
CAS
PubMed
Google Scholar
Denu JM: Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends in biochemical sciences. 2003, 28 (1): 41-48. 10.1016/S0968-0004(02)00005-1.
Article
CAS
PubMed
Google Scholar
Duharcourt S, Yao MC: Role of histone deacetylation in developmentally programmed DNA rearrangements in Tetrahymena thermophila. Eukaryotic cell. 2002, 1 (2): 293-303. 10.1128/EC.1.2.293-303.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Scherthan H: A bouquet makes ends meet. Nature reviews. 2001, 2 (8): 621-627. 10.1038/35085086.
Article
CAS
PubMed
Google Scholar
Loidl J, Scherthan H: Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. Journal of cell science. 2004, 117 (Pt 24): 5791-5801.
Article
CAS
PubMed
Google Scholar
Chicoine LG, Wenkert D, Richman R, Wiggins JC, Allis CD: Modulation of linker histones during development in Tetrahymena: selective elimination of linker histone during the differentiation of new macronuclei. Developmental biology. 1985, 109 (1): 1-8. 10.1016/0012-1606(85)90339-2.
Article
CAS
PubMed
Google Scholar
Hook SS, Orian A, Cowley SM, Eisenman RN: Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proceedings of the National Academy of Sciences of the United States of America. 2002, 99 (21): 13425-13430. 10.1073/pnas.172511699.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boyault C, Gilquin B, Zhang Y, Rybin V, Garman E, Meyer-Klaucke W, Matthias P, Muller CW, Khochbin S: HDAC6-p97/VCP controlled polyubiquitin chain turnover. The EMBO journal. 2006, 25 (14): 3357-3366. 10.1038/sj.emboj.7601210.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J: HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. The EMBO journal. 2010, 29 (5): 969-980. 10.1038/emboj.2009.405.
Article
PubMed Central
CAS
PubMed
Google Scholar
Miao W, Xiong J, Bowen J, Wang W, Liu Y, Braguinets O, Grigull J, Pearlman RE, Orias E, Gorovsky MA: Microarray analyses of gene expression during the Tetrahymena thermophila life cycle. PloS one. 2009, 4 (2): e4429-10.1371/journal.pone.0004429.
Article
PubMed Central
PubMed
Google Scholar
Yao MC, Yao CH: Transformation of Tetrahymena to cycloheximide resistance with a ribosomal protein gene through sequence replacement. Proceedings of the National Academy of Sciences of the United States of America. 1991, 88 (21): 9493-9497. 10.1073/pnas.88.21.9493.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boldrin F, Santovito G, Gaertig J, Wloga D, Cassidy-Hanley D, Clark TG, Piccinni E: Metallothionein gene from Tetrahymena thermophila with a copper-inducible-repressible promoter. Eukaryotic cell. 2006, 5 (2): 422-425. 10.1128/EC.5.2.422-425.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
McGrath KE, Smothers JF, Dadd CA, Madireddi MT, Gorovsky MA, Allis CD: An abundant nucleolar phosphoprotein is associated with ribosomal DNA in Tetrahymena macronuclei. Molecular biology of the cell. 1997, 8 (1): 97-108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Satir B, Dirksen ER: Nucleolar aging in Tetrahymena during the cultural growth cycle. The Journal of cell biology. 1971, 48 (1): 143-154. 10.1083/jcb.48.1.143.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sugai T, Hiwatashi K: Cytologic and autoradiographic studies of the micronucleus at meiotic prophase in Tetrahymena pyriformis. The Journal of protozoology. 1974, 21 (4): 542-548.
Article
CAS
PubMed
Google Scholar
Mochizuki K, Novatchkova M, Loidl J: DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. Journal of cell science. 2008, 121 (Pt 13): 2148-2158.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes & development. 2006, 20 (10): 1256-1261. 10.1101/gad.1412706.
Article
CAS
Google Scholar
Yakisich JS, Kapler GM: The effect of phosphoinositide 3-kinase inhibitors on programmed nuclear degradation in Tetrahymena and fate of surviving nuclei. Cell death and differentiation. 2004, 11 (10): 1146-1149. 10.1038/sj.cdd.4401473.
Article
CAS
PubMed
Google Scholar
Akematsu T, Endoh H: Role of apoptosis-inducing factor (AIF) in programmed nuclear death during conjugation in Tetrahymena thermophila. BMC cell biology. 2010, 11: 13-10.1186/1471-2121-11-13.
Article
PubMed Central
PubMed
Google Scholar
Kobayashi T, Endoh H: A possible role of mitochondria in the apoptotic-like programmed nuclear death of Tetrahymena thermophila. The FEBS journal. 2005, 272 (20): 5378-5387. 10.1111/j.1742-4658.2005.04936.x.
Article
CAS
PubMed
Google Scholar
Tone S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC: Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental cell research. 2007, 313 (16): 3635-3644. 10.1016/j.yexcr.2007.06.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mpoke S, Wolfe J: DNA digestion and chromatin condensation during nuclear death in Tetrahymena. Experimental cell research. 1996, 225 (2): 357-365. 10.1006/excr.1996.0186.
Article
CAS
PubMed
Google Scholar
Kobayashi T, Endoh H: Caspase-like activity in programmed nuclear death during conjugation of Tetrahymena thermophila. Cell death and differentiation. 2003, 10 (6): 634-640. 10.1038/sj.cdd.4401216.
Article
CAS
PubMed
Google Scholar
Lu E, Wolfe J: Lysosomal enzymes in the macronucleus of Tetrahymena during its apoptosis-like degradation. Cell death and differentiation. 2001, 8 (3): 289-297. 10.1038/sj.cdd.4400807.
Article
CAS
PubMed
Google Scholar
Liu T, Liu PY, Marshall GM: The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer research. 2009, 69 (5): 1702-1705. 10.1158/0008-5472.CAN-08-3365.
Article
CAS
PubMed
Google Scholar
Ahn SH, Diaz RL, Grunstein M, Allis CD: Histone H2B deacetylation at lysine 11 is required for yeast apoptosis induced by phosphorylation of H2B at serine 10. Molecular cell. 2006, 24 (2): 211-220. 10.1016/j.molcel.2006.09.008.
Article
CAS
PubMed
Google Scholar
Boix-Chornet M, Fraga MF, Villar-Garea A, Caballero R, Espada J, Nunez A, Casado J, Largo C, Casal JI, Cigudosa JC: Release of hypoacetylated and trimethylated histone H4 is an epigenetic marker of early apoptosis. The Journal of biological chemistry. 2006, 281 (19): 13540-13547. 10.1074/jbc.M601136200.
Article
CAS
PubMed
Google Scholar
Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L: Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes & development. 2006, 20 (9): 1075-1080. 10.1101/gad.1399706.
Article
CAS
Google Scholar
Haigis MC, Guarente LP: Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes & development. 2006, 20 (21): 2913-2921. 10.1101/gad.1467506.
Article
CAS
Google Scholar
Straight AF, Shou W, Dowd GJ, Turck CW, Deshaies RJ, Johnson AD, Moazed D: Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell. 1999, 97 (2): 245-256. 10.1016/S0092-8674(00)80734-5.
Article
CAS
PubMed
Google Scholar
Moazed D: Common themes in mechanisms of gene silencing. Molecular cell. 2001, 8 (3): 489-498. 10.1016/S1097-2765(01)00340-9.
Article
CAS
PubMed
Google Scholar
Cameron IL, Guile EE: Nucleolar and Biochemical Changes During Unbalanced Growth of Tetrahymena Pyriformis. The Journal of cell biology. 1965, 26 (3): 845-855. 10.1083/jcb.26.3.845.
Article
PubMed Central
CAS
PubMed
Google Scholar
Elliott AM, Kennedy JR, Bak IJ: Macronuclear events in synchronously dividing Tetrahymena pyriformis. The Journal of cell biology. 1962, 12: 515-531. 10.1083/jcb.12.3.515.
Article
PubMed Central
CAS
PubMed
Google Scholar
Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. The EMBO journal. 2002, 21 (10): 2383-2396. 10.1093/emboj/21.10.2383.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ajiro K: Histone H2B phosphorylation in mammalian apoptotic cells. An association with DNA fragmentation. The Journal of biological chemistry. 2000, 275 (1): 439-443. 10.1074/jbc.275.1.439.
Article
CAS
PubMed
Google Scholar
Akematsu T, Pearlman RE, Endoh H: Gigantic macroautophagy in programmed nuclear death of Tetrahymena thermophila. Autophagy. 2010, 6 (7): 901-911. 10.4161/auto.6.7.13287.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular biology and evolution. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Malone CD, Falkowska KA, Li AY, Galanti SE, Kanuru RC, LaMont EG, Mazzarella KC, Micev AJ, Osman MM, Piotrowski NK: Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila. Eukaryotic cell. 2008, 7 (9): 1487-1499. 10.1128/EC.00193-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sambrook J, Russell D: Transformation of E. coli by Electroporation. Molecular Cloning: A Laboratory Manual. 2001, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1: 120-121. 3
Google Scholar
Marsh TC, Cole ES, Romero DP: The transition from conjugal development to the first vegetative cell division is dependent on RAD51 expression in the ciliate Tetrahymena thermophila. Genetics. 2001, 157 (4): 1591-1598.
PubMed Central
CAS
PubMed
Google Scholar
Asai DJ, Forney JD: Tetrahymena thermophila. Methods in cell biology. Edited by: L W, P M. 2000, San Diego, CA Academic Press, 62: 489-490.
Google Scholar
Cole ES, Stuart KR, Marsh TC, Aufderheide K, Ringlien W: Confocal fluorescence microscopy for Tetrahymena thermophila. Methods in cell biology. 2002, 70: 337-359.
Article
CAS
PubMed
Google Scholar