Delgado-Olguin P, Recillas-Targa F: Chromatin structure of pluripotent stem cells and induced pluripotent stem cells. Brief Funct Genomics. 2011, 10: 37-49. 10.1093/bfgp/elq038.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G, Moon RT, Stamatoyannopoulos J, Murry CE: A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell. 2012, 151 (1): 221-232. 10.1016/j.cell.2012.08.027.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gaspar-Maria A, Alajem A, Polesso E, Sridharan R, Mason MJ, Heiderbach A, Ramalho-Santos J, McManus MT, Plath K, Meshorer E, Ramalho-Santos M: Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature. 2009, 460: 863-868.
Google Scholar
Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, Antosiewicz-Bourget J, Ye Z, Espinoza C, Agarwahl S, Shen L, Ruotti V, Wang W, Stewart R, Thomson JA, Ecker JR, Ren B: Distinct epigenomic landscapes of pluripotent and lineage committed human cells. Cell Stem Cell. 2010, 6 (5): 479-491. 10.1016/j.stem.2010.03.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fisher CL, Fisher AG: Chromatin states in pluripotent differentiated and reprogrammed cells. Curr Opin Genet Dev. 2011, 21: 140-146. 10.1016/j.gde.2011.01.015.
Article
CAS
PubMed
Google Scholar
Kuzmichev A, Margueron R, Vaquero A, Preissner TS, Scher M, Kirmizis A, Iuoyang X, Brockdorff N, Abate-Shen C, Farnham P, Reinberg D: Composition and histone substrates of polycomb repressive complexes change during cellular differentiation. Proc Natl Acad Sci U S A. 2005, 102: 1859-1864. 10.1073/pnas.0409875102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Werni M, Jaenisch R, Nusbaum C, Lander ES, Berstein BE: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007, 448: 553-560. 10.1038/nature06008.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray H, Zucker JP, Yuan B, Bell GW, Herbolsheimerm E, Hannett NM, Sun K, Odum D, Qtte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA: Control of developmental regulators by polycomb in human embryonic stem cells. Cell. 2006, 125: 301-313. 10.1016/j.cell.2006.02.043.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros L, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R: Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006, 441: 349-353. 10.1038/nature04733.
Article
CAS
PubMed
Google Scholar
Dietrich N, Lerdrup M, Landt E, Agarwal-Singh S, Bak M, Tommerup N, Rappsilber J, Sodersten E, Hansen K: REST-mediated recruitment of polycomb repressor complexes in Mammalian cells. PLoS Genet. 2012, 8 (3): e1002494-10.1371/journal.pgen.1002494.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pietersen AM, Van Lohuizen M: Stem cell regulation of polycomb repressors: postponing commitment. Curr Opin Cell Biol. 2008, 20: 201-207. 10.1016/j.ceb.2008.01.004.
Article
CAS
PubMed
Google Scholar
Richly A, Aloia L, Di Croce L: Roles of the Polycomb group proteins in stem cells and cancer. Cell Death Dis. 2011, 2: e204-10.1038/cddis.2011.84. doi:10.1038/cddis.2011.84
Article
PubMed Central
CAS
PubMed
Google Scholar
Morey L, Pasual G, Cozzuto L, Roma G, Wutz A, Benitah SA, DiCroce L: Nonoverlapping functions of the polycomb group group cbx family of proteins in embryonic stem cells. Cell Stem Cell. 2012, 10: 47-62. 10.1016/j.stem.2011.12.006.
Article
CAS
PubMed
Google Scholar
Rajasekhar VR, Begemann M: Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells. 2007, 25: 2498-2510. 10.1634/stemcells.2006-0608.
Article
CAS
PubMed
Google Scholar
Cao R, Tsukada Y, Zhang Y: Role of Bmi-1 and Ring1A in H2A Ubiquitylation and Hox Gene Silencing. Mol Cell. 2005, 20: 845-854. 10.1016/j.molcel.2005.12.002.
Article
CAS
PubMed
Google Scholar
de Napoles M, Mermoud JE, Wakao R, Tang YA, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N: Polycomb Group Proteins Ring1A/B Link Ubiquitylation of Histone H2A to Heritable Gene Silencing and X Inactivation. Dev Cell. 2004, 7: 663-676. 10.1016/j.devcel.2004.10.005.
Article
CAS
PubMed
Google Scholar
Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M, Vidal M, Alkema M, Berns A, Koseki H: Mice doubly deficient for the Polycomb Group genes Mel18 and Bmi1 reveal synergy and requirement for maintenance but not initiation of Hox gene expression. Development. 2001, 128: 1587-1597.
CAS
PubMed
Google Scholar
del Mar LM, Marcos-Gutiérrez C, Pérez C, Schoorlemmer J, Ramírez A, Magin T, Vidal M: Loss- and gain-of-function mutations show a Polycomb group function for Ring1A in mice. Development. 2000, 127: 5093-5100.
Google Scholar
Voncken JW, Roelen BJ, Roefs M, de Vries S, Verhoeven E, Marino S, Deschamps J, van Lohuizen M: Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci U S A. 2003, 100: 2468-2473. 10.1073/pnas.0434312100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su I, Hannon G, Tarakhovsky A, Fuchs E: Ezh2 orchestrates gene expression for the stepwise differentiation of tissue–specific. Stem Cells. 2009, 136 (6): 122-1135.
Google Scholar
Landeira D, Fisher AG: Inactive yet indispensable: the tale of Jarid2. Trends Cell Biol. 2011, 21: 74-80. 10.1016/j.tcb.2010.10.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pasini D, Bracken AP, Jensen MR, Denchi EL, Helin K: Suz12 is essential for mouse development and for EZH2 histone methyltranferase activity. EMBO J. 2004, 23: 4061-4071. 10.1038/sj.emboj.7600402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH: Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell. 2009, 139: 1303-1314. 10.1016/j.cell.2009.12.003.
Article
PubMed Central
PubMed
Google Scholar
Caretti G, Padova M, Micales B, Lyons GE, Sartorelli V: The Polycomb Ezh2 methyltranferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev. 2004, 18: 2627-2638. 10.1101/gad.1241904.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischk IR, Studer L, Temple S: Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev. 2009, 23: 561-571. 10.1101/gad.1743709.
Article
PubMed Central
CAS
PubMed
Google Scholar
Molofsky A, Pardal R, Iwashita T, Park I, Clarke MF, Morrison S: Bmi-1 dependence distinguishes neural stem cells self–renewal from progenitor proliferation. Nature. 2003, 425: 962-967. 10.1038/nature02060.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT: EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate. 2007, 67: 547-556. 10.1002/pros.20550.
Article
CAS
PubMed
Google Scholar
Sasaki M, Yamaguchi J, Ikeda H, Itatsu K, Nakanuma Y: Polycomb group protein Bmi1 is overexpressed and essential in anchorage-independent colony formation, cell proliferation and repression of cellular senescence in cholangiocarcinoma Tissue and culture studies. Hum Pathol. 2009, 40: 1723-1730. 10.1016/j.humpath.2009.01.027.
Article
CAS
PubMed
Google Scholar
Weikert S, Christoph F, Köllermann J, Müller M, Schrader M, Miller K, Krause H: Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med. 2005, 16 (2): 349-353.
CAS
PubMed
Google Scholar
Kumar N, Hinduja I, Nagvenkar P, Pillai L, Zaveri K, Mukadam L, Telang J, Desai S, Mangoli V, Mangoli R, Padgaonkar S, Kaur G, Puri C, Bhartiya D: Derivation and characterization of two genetically unique human embryonic stem cell Lines on in-house- derived human feeders. Stem Cells Dev. 2009, 18: 67-77. 10.1089/scd.2008.0002.
Article
Google Scholar
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM: Embryonic stem cell lines derived from human blastocysts. Science. 1998, 282: 1145-1147.
Article
CAS
PubMed
Google Scholar
Pasini D, Bracken AP, Hansen JB, Manuela C, Helin K: The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol. 2007, 10: 3769-3779.
Article
Google Scholar
Woo CJ, Kharchenko PV, Daheron L, Park PJ, Kingston RE: A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell. 2010, 140 (1): 99-110. 10.1016/j.cell.2009.12.022.
Article
PubMed Central
CAS
PubMed
Google Scholar
Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, Kelly OG, Wang A, D’Amour KA, Robins AJ, Won KJ, Kaestner KH, Sander M: Dynamic chromatin remodeling mediated by Polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013, 12 (2): 224-237. 10.1016/j.stem.2012.11.023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dominguez-Bendalaa J, Inverardia L, Ricordi C: Stem cell-derived islet cells for transplantation. Curr Opin Organ Transplant. 2011, 16: 76-82. 10.1097/MOT.0b013e32834252b5.
Article
Google Scholar
Hoof DV, D’Amour KA, German M: Derivation of insulin-producing cells from human embryonic stem cells. Stem Cell Res. 2009, 3: 73-87. 10.1016/j.scr.2009.08.003.
Article
PubMed
Google Scholar
Mfopou JK, Chen B, Sui L, Sermon K, Bouwens L: Recent advances and prospects in the differentiation of pancreatic cells from human embryonic stem cells. Diabetes. 2010, 59: 2094-2101. 10.2337/db10-0439.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nagvenkar P, Pethe P, Pawani H, Telang J, Kumar N, Hinduja I, Zaveri K, Bhartiya D: Evaluating differentiation propensity of in-house derived human embryonic stem cell lines KIND-1 and KIND-2. In Vitro Cell Dev Biol Anim. 2011, 47: 406-419. 10.1007/s11626-011-9420-9.
Article
CAS
PubMed
Google Scholar
Stojic L, Jasencakova Z, Prezioso C, Stützer A, Bodega B, Pasini D, Klingberg R, Mozzetta C, Margueron R, Puri PL, Schwarzer D, Helin K, Fischle W, Orlando V: Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells. Epigenetics Chromatin. 2011, 4: 16-10.1186/1756-8935-4-16.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kopp JL, Ormsbee BD, Desler M, Rizzino A: Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells. 2008, 26 (4): 903-911. 10.1634/stemcells.2007-0951.
Article
CAS
PubMed
Google Scholar
Niwa H, Miyazaki J, Smith AG: Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000, 24: 372-376. 10.1038/74199.
Article
CAS
PubMed
Google Scholar
Teo AK, Arnold SJ, Trotter MW, Brown S, Ang LT, Chng Z, Robertson EJ, Dunn NR, Vallier L: Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev. 2011, 25: 238-250. 10.1101/gad.607311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, Ema H, Kamijo T, Katoh-Fukui Y, Koseki H, van Lohuizen M, Nakauchi H: Enhanced self renewal of hematopoietic stem cell self renewal mediated by the polycomb gene product Bmi-1. Immunity. 2004, 21: 843-851. 10.1016/j.immuni.2004.11.004.
Article
CAS
PubMed
Google Scholar
Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF: Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003, 42 (3): 302-305.
Article
Google Scholar
Surface LE, Thornton SR, Boyer LA: Polycomb group proteins Set the stage for early lineage commitment. Cell Stem Cell. 2010, 7: 288-298. 10.1016/j.stem.2010.08.004.
Article
CAS
PubMed
Google Scholar
Zhang Z, Jones A, Sun CW, Li C, Chang CW, Joo HY, Dai Q, Mysliwiec MR, Wu LC, Guo Y, Yang W, Liu K, Pawlik KM, Erdjument-Bromage H, Tempst P, Lee Y, Min J, Townes TM, Wang H: PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells. 2011, 29 (2): 229-240. 10.1002/stem.578.
Article
PubMed Central
PubMed
Google Scholar
de la Cruz C, Fang J, Plath K, Worringer KA, Nusinow DA, Zhang Y, Panning B: Developmental regulation of Suz12 localization. Chromosoma. 2005, 114 (3): 183-192. 10.1007/s00412-005-0008-6.
Article
PubMed
Google Scholar
Lee ER, Murdoch FE, Fristsch MK: High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells. 2007, 25: 2191-2199. 10.1634/stemcells.2007-0203.
Article
CAS
PubMed
Google Scholar
Qin J, Whyte WA, Anderssen E, Apostolou E, Chen HH, Akbarian S, Bronson RT, Hochedlinger K, Ramaswamy S, Young RA, Hock H: The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell. 2012, 11 (3): 319-332. 10.1016/j.stem.2012.06.002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Arensbergen J, García-Hurtado J, Ignasi Moran I, Maestro MA, Xu X, de Casteele MV, Skoudy AL, Palassini M, Heimberg H, Ferrer J: Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 2010, 20 (6): 722-732. 10.1101/gr.101709.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kroon E, Martinson LA, Kadoya K, Bang AB, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge E: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008, 26: 443-452. 10.1038/nbt1393.
Article
CAS
PubMed
Google Scholar