Petroski MD, Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005, 6 (1): 9-20.
Article
CAS
PubMed
Google Scholar
Petroski MD, Deshaies RJ: In vitro reconstitution of SCF substrate ubiquitination with purified proteins. Methods Enzymol. 2005, 398: 143-158.
Article
CAS
PubMed
Google Scholar
Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke Andersen K, Wei N, Sun H, Kobayashi R, Zhang H: CAND1 Binds to Unneddylated CUL1 and Regulates the Formation of SCF Ubiquitin E3 Ligase Complex. Mol Cell. 2002, 10 (6): 1519-1526.
Article
CAS
PubMed
Google Scholar
Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 2000, 408 (6810): 381-386.
Article
CAS
PubMed
Google Scholar
Pause A, Peterson B, Schaffar G, Stearman R, Klausner RD: Studying interactions of four proteins in the yeast two-hybrid system: structural resemblance of the pVHL/elongin BC/hCUL-2 complex with the ubiquitin ligase complex SKP1/cullin/F-box protein. Proc Natl Acad Sci U S A. 1999, 96 (17): 9533-9538.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kamura T, Sato S, Haque D, Liu L, Kaelin WG, Conaway RC, Conaway JW: The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 1998, 12 (24): 3872-3881.
Article
PubMed Central
CAS
PubMed
Google Scholar
Furukawa M, He YJ, Borchers C, Xiong Y: Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol. 2003, 5 (11): 1001-1007.
Article
CAS
PubMed
Google Scholar
Geyer R, Wee S, Anderson S, Yates J, Wolf DA: BTB/POZ domain proteins Are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol Cell. 2003, 12: 783-790.
Article
CAS
PubMed
Google Scholar
Pintard L, Willems A, Peter M: Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. Embo J. 2004, 23 (8): 1681-1687.
Article
PubMed Central
CAS
PubMed
Google Scholar
Deshaies RJ, Seol JH, McDonald WH, Cope G, Lyapina S, Shevchenko A, Shevchenko A, Verma R, Yates JR: Charting the protein complexome in yeast by mass spectrometry. Mol Cell Proteomics. 2002, 1 (1): 3-10.
Article
CAS
PubMed
Google Scholar
Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M, Elledge SJ, Harper JW: BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature. 2003, 425 (6955): 316-321.
Article
CAS
PubMed
Google Scholar
Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N: Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006, 443 (7111): 590-593.
CAS
PubMed
Google Scholar
He YJ, McCall CM, Hu J, Zeng Y, Xiong Y: DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 2006, 20 (21): 2949-2954.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li T, Chen X, Garbutt KC, Zhou P, Zheng N: Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell. 2006, 124 (1): 105-117.
Article
CAS
PubMed
Google Scholar
Eng JK, McCormack AL, Yates JR: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Amer Soc Mass Spectrom. 1994, 5: 976-989.
Article
CAS
Google Scholar
Tabb DL, Eng JK, Yates JR: Protein Identification by SEQUEST. Proteome Research: Mass Spectrometry. 2001, Springer Berlin Heidelberg, 126-142.
Google Scholar
Geer LY, Domrachev M, Lipman DJ, Bryant SH: CDART: protein homology by domain architecture. Genome Res. 2002, 12 (10): 1619-1623.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cummings CM, Bentley CA, Perdue SA, Baas PW, Singer JD: The Cul3/Klhdc5 E3 ligase regulates p60/katanin and is required for normal mitosis in mammalian cells. J Biol Chem. 2009, 284 (17): 11663-11675.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pisani DF, Cabane C, Derijard B, Dechesne CA: The topoisomerase 1-interacting protein BTBD1 is essential for muscle cell differentiation. Cell Death Differ. 2004, 11 (11): 1157-1165.
Article
CAS
PubMed
Google Scholar
Xu L, Yang L, Hashimoto K, Anderson M, Kohlhagen G, Pommier Y, D’Arpa P: Characterization of BTBD1 and BTBD2, two similar BTB-domain-containing Kelch-like proteins that interact with Topoisomerase I. BMC Genomics. 2002, 3: 1-
Article
PubMed Central
PubMed
Google Scholar
Dai MS, Chevallier N, Stone S, Heinrich MC, McConnell M, Reuter T, Broxmeyer HE, Licht JD, Lu L, Hoatlin ME: The effects of the Fanconi anemia zinc finger (FAZF) on cell cycle, apoptosis, and proliferation are differentiation stage-specific. J Biol Chem. 2002, 277 (29): 26327-26334.
Article
CAS
PubMed
Google Scholar
Beaulieu AM, Sant’Angelo DB: The BTB-ZF family of transcription factors: key regulators of lineage commitment and effector function development in the immune system. J Immunol. 2011, 187 (6): 2841-2847.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu Y, Lepre J, Shah N, Kay NE: Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003, 1 (5): 346-361.
CAS
PubMed
Google Scholar
Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, Osterborg A, Mellstedt H: Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol. 2010, 151 (4): 327-335.
Article
CAS
PubMed
Google Scholar
Wimuttisuk W, Singer JD: The Cullin3 ubiquitin ligase functions as a Nedd8-bound heterodimer. Mol Biol Cell. 2007, 18 (3): 899-909.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sumara I, Quadroni M, Frei C, Olma MH, Sumara G, Ricci R, Peter M: A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev Cell. 2007, 12 (6): 887-900.
Article
CAS
PubMed
Google Scholar
Rondou P, Haegeman G, Vanhoenacker P, Van Craenenbroeck K: BTB Protein KLHL12 targets the dopamine D4 receptor for ubiquitination by a Cul3-based E3 ligase. J Biol Chem. 2008, 283 (17): 11083-11096.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marshall J, Blair LA, Singer JD: BTB-Kelch proteins and ubiquitination of kainate receptors. Adv Exp Med Biol. 2011, 717: 115-125.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huotari J, Meyer-Schaller N, Hubner M, Stauffer S, Katheder N, Horvath P, Mancini R, Helenius A, Peter M: Cullin-3 regulates late endosome maturation. Proc Natl Acad Sci U S A. 2012, 109 (3): 823-828.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sambuughin N, Swietnicki W, Techtmann S, Matrosova V, Wallace T, Goldfarb L, Maynard E: KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochem Biophys Res Commun. 2012, 421 (4): 743-749.
Article
CAS
PubMed
Google Scholar
Rechsteiner M, Rogers SW: PEST sequences and regulation by proteolysis. Trends Biochem Sci. 1996, 21 (7): 267-271.
Article
CAS
PubMed
Google Scholar
Rogers S, Wells R, Rechsteiner M: Amino acid sequences common to rapidly degraded proteins: the pest hypothesis. Science. 1986, 234: 364-368.
Article
CAS
PubMed
Google Scholar
Schaefer H, Rongo C: KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell. 2006, 17 (3): 1250-1260.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pintard L, Willis JH, Willems A, Johnson JL, Srayko M, Kurz T, Glaser S, Mains PE, Tyers M, Bowerman B, Peter M: The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature. 2003, 425 (6955): 311-316.
Article
CAS
PubMed
Google Scholar
Petroski MD, Kleiger G, Deshaies RJ: Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex. Mol Cell. 2006, 24 (4): 523-534.
Article
CAS
PubMed
Google Scholar
Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, Moon RT: The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol. 2006, 8 (4): 348-357.
Article
CAS
PubMed
Google Scholar
Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA: The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004, 24 (19): 8477-8486.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M: Oxidative stress sensor keap1 functions as an adaptor for cul3-based e3 ligase to regulate proteasomal degradation of nrf2. Mol Cell Biol. 2004, 24 (16): 7130-7139.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salinas GD, Blair LA, Needleman LA, Gonzales JD, Chen Y, Li M, Singer JD, Marshall J: Actinfilin is a CUL3 substrate adaptor, linking GluR6 kainate receptor subunits to the ubiquitin-proteasome pathway. J Biol Chem. 2006, 281 (52): 40164-40173.
Article
CAS
PubMed
Google Scholar
Zhou P, Howley PM: Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol Cell. 1998, 2 (5): 571-580.
Article
CAS
PubMed
Google Scholar
Geng Y, Whoriskey W, Park MY, Bronson RT, Medema RH, Li T, Weinberg RA, Sicinski P: Rescue of cyclin D1 deficiency by knockin cyclin E. Cell. 1999, 97: 767-777.
Article
CAS
PubMed
Google Scholar
Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM: Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev. 1996, 10: 1979-1990.
Article
CAS
PubMed
Google Scholar
Singer JD, Gurian-West M, Clurman B, Roberts JM: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 1999, 13 (18): 2375-2387.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Lipman DJ: Protein database searches for multiple alignments. Proc Natl Acad Sci U S A. 1990, 87 (14): 5509-5513.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gish W, States DJ: Identification of protein coding regions by database similarity search. Nat Genet. 1993, 3 (3): 266-272.
Article
CAS
PubMed
Google Scholar