Nüsslein-Volhard C, Wieshaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287(5785):795–801. https://doi.org/10.1038/287795a0.
Article
PubMed
Google Scholar
Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell. 1993;75(7):1417–30. https://doi.org/10.1016/0092-8674(93)90627-3.
Article
CAS
PubMed
Google Scholar
Hall TM, Porter JA, Beachy PA, Leahy DJ. A potential catalytic site revealed by the 1.7-A crystal structure of the amino-terminal signalling domain of Sonic hedgehog. Nature. 1995;378:212–6.
Article
CAS
PubMed
Google Scholar
Fuse N, Maiti T, Wang B, Porter JA, Hall TM, Leahy DJ, et al. Sonic hedgehog protein signals not as a hydrolytic enzyme but as an apparent ligand for patched. Proc. Natl. Acad. Sci. U.S.A. 1999;96(20):10992–9. https://doi.org/10.1073/pnas.96.20.10992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosanac I, Maun HR, Scales SJ, Wen X, Lingel A, Bazan JF, et al. The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat Struct Mol Biol. 2009;16(7):691–7. https://doi.org/10.1038/nsmb.1632.
Article
CAS
PubMed
Google Scholar
Maun HR, Wen X, Lingel A, de Sauvage FJ, Lazarus RA, Scales SJ, et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J Biol Chem. 2010;285(34):26570–80. https://doi.org/10.1074/jbc.M110.112284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Himmelstein DS, Cajigas I, Bi C, Clark BS, Van Der Voort G, Kohtz JD. SHH E176/E177-Zn (2+) conformation is required for signaling at endogenous sites. Dev Biol. 2017;424(2):221–35. https://doi.org/10.1016/j.ydbio.2017.02.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, et al. Mutations in the human Sonic hedgehog gene cause holoprosencephaly. Nat Genet. 1996;14(3):357–60. https://doi.org/10.1038/ng1196-357.
Article
CAS
PubMed
Google Scholar
Traiffort E, Dubourg C, Faure H, Rognan D, Odent S, Durou M-R, et al. Functional characterization of sonic hedgehog mutations associated with holoprosencephaly. J Biol Chem; 2004;279:42889–42897.
Gong X, Qian H, Cao P, Zhao X, Zhou Q, Lei J, et al. Structural basis for the recognition of Sonic Hedgehog by human Patched1. Science. 2018;112:eaas8935.
Article
Google Scholar
Qi X, Schmiege P, Coutavas E, Wang J, Li X. Structures of human Patched and its complex with native palmitoylated sonic hedgehog. Nature. 2018;15:3059.
Google Scholar
Qi X, Schmiege P, Coutavas E, Li X. Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science. 2018;112:eaas8843.
Article
Google Scholar
Tukachinsky H, Petrov K, Watanabe M, Salic A. Mechanism of inhibition of the tumor suppressor patched by Sonic hedgehog. Proc Natl Acad Sci USA. 2016;113(40):E5866–75. https://doi.org/10.1073/pnas.1606719113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebollido-Rios R, Bandari S, Wilms C, Jakuschev S, Vortkamp A, Grobe K, et al. Signaling domain of Sonic Hedgehog as cannibalistic calcium-regulated zinc-peptidase. Groot BL de, editor. PLoS Comput. Biol. 2014;10:e1003707.
Article
PubMed
PubMed Central
Google Scholar
Roelink H. Sonic Hedgehog Is a Member of the Hh/DD-Peptidase Family That Spans the Eukaryotic and Bacterial Domains of Life. J Dev Biol. 2018;6:12.
Article
PubMed Central
Google Scholar
Yan D, Lin X. Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol; 2009;1:a002493–3.
Carrasco H, Olivares GH, Faunes F, Oliva C, Larraín J. Heparan sulfate proteoglycans exert positive and negative effects in Shh activity. J Cell Biochem. 2005;96(4):831–8. https://doi.org/10.1002/jcb.20586.
Article
CAS
PubMed
Google Scholar
Capurro MI, Xu P, Shi W, Li F, Jia A, Filmus J. Glypican-3 inhibits hedgehog signaling during development by competing with patched for hedgehog binding. Dev Cell. 2008;14(5):700–11. https://doi.org/10.1016/j.devcel.2008.03.006.
Article
CAS
PubMed
Google Scholar
Witt RM, Hecht M-L, Pazyra-Murphy MF, Cohen SM, Noti C, van Kuppevelt TH, et al. Heparan sulfate proteoglycans containing a glypican 5 core and 2-O-sulfo-iduronic acid function as Sonic Hedgehog co-receptors to promote proliferation. J Biol Chem. 2013;288:26275–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Guo W, Roelink H. Loss of the Heparan Sulfate Proteoglycan Glypican5 Facilitates Long‐Range Sonic Hedgehog Signaling. Stem Cells 2019;37:899–909. https://doi.org/10.1002/stem.3018.
Siekmann AF, Brand M. Distinct tissue-specificity of three zebrafish ext1 genes encoding proteoglycan modifying enzymes and their relationship to somitic Sonic hedgehog signaling. Dev Dyn Wiley-Blackwell. 2005;232(2):498–505. https://doi.org/10.1002/dvdy.20248.
Article
CAS
Google Scholar
Bellaiche Y, The I, Perrimon N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature. 1998;394(6688):85–8. https://doi.org/10.1038/27932.
Article
CAS
PubMed
Google Scholar
Hellewell AL, Rosini S, Adams JC. A rapid, scalable method for the isolation, functional study, and analysis of cell-derived extracellular matrix. J Vis Exp. 2017;(119). https://doi.org/10.3791/55051.
Farshi P, Ohlig S, Pickhinke U, Höing S, Jochmann K, Lawrence R, et al. Dual roles of the Cardin-Weintraub motif in multimeric Sonic hedgehog. J Biol Chem. 2011;286(26):23608–19. https://doi.org/10.1074/jbc.M110.206474.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohlig S, Pickhinke U, Sirko S, Bandari S, Hoffmann D, Dreier R, et al. An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions. J Biol Chem. 2012;287(52):43708–19. https://doi.org/10.1074/jbc.M112.356667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian H, Jeong J, Harfe BD, Tabin CJ, McMahon AP. Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand. Development (Cambridge, England). 2005;132:133–42.
Article
CAS
Google Scholar
Tukachinsky H, Kuzmickas RP, Jao CY, Liu J, Salic A. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep. 2012;2(2):308–20. https://doi.org/10.1016/j.celrep.2012.07.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casillas C, Roelink H. Gain-of-function Shh mutants activate Smo cell-autonomously independent of Ptch1/2 function. Mech Dev. 2018;153:30–41. https://doi.org/10.1016/j.mod.2018.08.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 1998;8(10):397–403. https://doi.org/10.1016/S0962-8924(98)01346-4.
Article
CAS
PubMed
Google Scholar
Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell. 2006;10(6):839–50. https://doi.org/10.1016/j.devcel.2006.04.002.
Article
CAS
PubMed
Google Scholar
Day ES, Wen D, Garber EA, Hong J, Avedissian LS, Rayhorn P, et al. Zinc-dependent structural stability of human Sonic hedgehog. Biochemistry. 1999;38(45):14868–80. https://doi.org/10.1021/bi9910068.
Article
CAS
PubMed
Google Scholar
Kunjithapatham R, Geschwind J-F, Devine L, Boronina TN, O'Meally RN, Cole RN, et al. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J Proteome Res. 2015;14(4):1645–56. https://doi.org/10.1021/acs.jproteome.5b00089.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy RA, Barth JL, Chintalapudi MR, Knaak C, Argraves WS. Megalin functions as an endocytic sonic hedgehog receptor. J Biol Chem. 2002;277(28):25660–7. https://doi.org/10.1074/jbc.M201933200.
Article
CAS
PubMed
Google Scholar
Incardona JP, Lee JH, Robertson CP, Enga K, Kapur RP, Roelink H. Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc. Natl. Acad. Sci. USA. 2000;97(22):12044–9. https://doi.org/10.1073/pnas.220251997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson CW, Chuang PT. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development (Cambridge, England). 2010;137:2079–94.
Article
CAS
Google Scholar
Alonso MT, Rojo-Ruiz J, Navas-Navarro P, Rodríguez-Prados M, García-Sancho J. Measuring Ca2+ inside intracellular organelles with luminescent and fluorescent aequorin-based sensors. Biochim Biophys Acta Mol Cell Res. 2017;1864:894–9.
Article
CAS
PubMed
Google Scholar
Rawlings ND, Barrett AJ. Chapter 77 - Introduction: Metallopeptidases and Their Clans. In: Rawlings ND, Salvesen G, editors. Handbook of Proteolytic Enzymes (Third Edition). Third Edition. Academic Press; 2013. p. 325–70. https://www.sciencedirect.com/book/9780123822192/handbook-of-proteolytic-enzymes.
González V, Santamaría RI, Bustos P, Pérez-Carrascal OM, Vinuesa P, Juárez S, et al. Phylogenomic Rhizobium Species Are Structured by a Continuum of Diversity and Genomic Clusters. Front Microbiol. 2019;10:910.
Article
PubMed
PubMed Central
Google Scholar
Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, et al. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol. 2013;14:R15.
Article
PubMed
PubMed Central
Google Scholar
Matthews BW. Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res. 2002;21:333–40.
Article
Google Scholar
Tronrud DE, Roderick SL, Matthews BW. Structural basis for the action of thermolysin. Matrix Suppl. 1992;1:107–11.
CAS
PubMed
Google Scholar
Ochi H, Pearson BJ, Chuang P-T, Hammerschmidt M, Westerfield M. Hhip regulates zebrafish muscle development by both sequestering hedgehog and modulating localization of smoothened. Dev Biol. 2006;297(1):127–40. https://doi.org/10.1016/j.ydbio.2006.05.001.
Article
CAS
PubMed
Google Scholar
Coulombe J, Traiffort E, Loulier K, Faure H, Ruat M. Hedgehog interacting protein in the mature brain: membrane-associated and soluble forms. Mol Cell Neurosci. 2004;25:323–33 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15019948.
Article
CAS
PubMed
Google Scholar
Esko JD, Selleck SB. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002;71:435–71.
Article
CAS
PubMed
Google Scholar
Jakobs P, Schulz P, Ortmann C, Schürmann S, Exner S, Rebollido-Rios R, et al. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells. Sci Rep. 2016;6:26435–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakobs P, Schulz P, Schürmann S, Niland S, Exner S, Rebollido-Rios R, et al. Ca2+ coordination controls sonic hedgehog structure and its Scube2-regulated release. J Cell Sci. 2017;130(19):3261–71. https://doi.org/10.1242/jcs.205872.
Article
CAS
PubMed
Google Scholar
Vollmer W, Bertsche U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochim Biophys Acta. 2008;1778:1714–34.
Article
CAS
PubMed
Google Scholar
Bochtler M, Odintsov SG, Marcyjaniak M, Sabala I. Similar active sites in lysostaphins and D-Ala-D-Ala metallopeptidases. Protein Sci. 2004;13(4):854–61. https://doi.org/10.1110/ps.03515704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filmus J, Shi W, Wong ZM, Wong MJ. Identification of a new membrane-bound heparan sulphate proteoglycan. Biochem J. 1995;311(Pt 2):561–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science. 2019;363(6430):948–55. https://doi.org/10.1126/science.aat5053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng J, White B, Tyurina OV, Guner B, Larson T, Lee HY, et al. Synergistic and antagonistic roles of the Sonic hedgehog N- and C-terminal lipids. Development (Cambridge, England). 2004;131:4357–70.
Article
CAS
Google Scholar
Bitar AP, Cao M, Marquis H. The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis. J Bacteriol. 2008;190:107–11.
Article
CAS
PubMed
Google Scholar
Dierker T, Dreier R, Petersen A, Bordych C, Grobe K. Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells. J Biol Chem. 2009;284(12):8013–22. https://doi.org/10.1074/jbc.M806838200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakobs P, Exner S, Schürmann S, Pickhinke U, Bandari S, Ortmann C, et al. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J Cell Sci. 2014;127(8):1726–37. https://doi.org/10.1242/jcs.137695.
Article
CAS
PubMed
Google Scholar
Kheradmand F, Werb Z. Shedding light on sheddases: role in growth and development. Bioessays. 2002;24(1):8–12. https://doi.org/10.1002/bies.10037.
Article
CAS
PubMed
Google Scholar
Beltrami G, Ristori G, Scoccianti G, Tamburini A, Capanna R. Hereditary multiple Exostoses: a review of clinical appearance and metabolic pattern. Clin Cases Miner Bone Metab. 2016;13(2):110–8. https://doi.org/10.11138/ccmbm/2016.13.2.110.
Article
PubMed
PubMed Central
Google Scholar
Guo L, Wang J, Zhang T, Yang Y. Glypican-5 is a tumor suppressor in non-small cell lung cancer cells. Biochem Biophys Rep. 2016;6:108–12. https://doi.org/10.1016/j.bbrep.2016.03.010.
Article
PubMed
PubMed Central
Google Scholar
Han S, Ma X, Zhao Y, Zhao H, Batista A, Zhou S, et al. Identification of Glypican-3 as a potential metastasis suppressor gene in gastric cancer. Oncotarget. 2016;7(28):44406–16. https://doi.org/10.18632/oncotarget.9763.
Article
PubMed
PubMed Central
Google Scholar
Gish W, States DJ. Identification of protein coding regions by database similarity search. Nature Genetics. 1993;3(3):266–72. https://doi.org/10.1038/ng0393-266.
Article
CAS
PubMed
Google Scholar
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. https://doi.org/10.1093/bioinformatics/btp033.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLellan JS, Zheng X, Hauk G, Ghirlando R, Beachy PA, Leahy DJ. The mode of hedgehog binding to Ihog homologues is not conserved across different phyla. Nature. 2008;455(7215):979–83. https://doi.org/10.1038/nature07358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT, Beachy PA, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell. 1995;81(3):445–55. https://doi.org/10.1016/0092-8674(95)90397-6.
Article
CAS
PubMed
Google Scholar
Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, et al. Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature. 2000;406(6799):1005–9. https://doi.org/10.1038/35023008.
Article
CAS
PubMed
Google Scholar
Roberts B, Casillas C, Alfaro AC, Jägers C, Roelink H. Patched1 and Patched2 inhibit Smoothened non-cell autonomously. Elife. 2016;5:e17634.
Article
PubMed
PubMed Central
Google Scholar
Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12):e82. https://doi.org/10.1093/nar/gkr218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143.
Article
CAS
PubMed
PubMed Central
Google Scholar