Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57. https://doi.org/10.1038/bjc.1972.33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6. https://doi.org/10.1038/35037710.
Article
CAS
PubMed
Google Scholar
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.
Article
PubMed
PubMed Central
Google Scholar
Lasi M, David CN, Böttger A. Apoptosis in pre-Bilaterians: Hydra as a model. Apoptosis. 2010;15(3):269–78. https://doi.org/10.1007/s10495-009-0442-7.
Article
CAS
PubMed
Google Scholar
Accordi F, Chimenti C. Programmed cell death in the pancreas of Bufo bufo during metamorphosis. J Anat. 2001;199(Pt 4):419–27. https://doi.org/10.1046/j.1469-7580.2001.19940419.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiss T. Apoptosis and its functional significance in molluscs. Apoptosis. 2010;15(3):313–21. https://doi.org/10.1007/s10495-009-0446-3.
Article
PubMed
Google Scholar
Jiang C, Baehrecke EH, Thummel CS. Steroid regulated programmed cell death during Drosophila metamorphosis. Development. 1997;124(22):4673–83. https://doi.org/10.1242/dev.124.22.4673.
Article
CAS
PubMed
Google Scholar
Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;88(3):347–54. https://doi.org/10.1016/S0092-8674(00)81873-5.
Article
CAS
PubMed
Google Scholar
Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development. 2000;127(24):5245–52. https://doi.org/10.1242/dev.127.24.5245.
Article
CAS
PubMed
Google Scholar
Nishikawa A, Hayashi H. Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis. Differentiation. 1995;59(4):207–14. https://doi.org/10.1046/j.1432-0436.1995.5940207.x.
Article
CAS
PubMed
Google Scholar
Furuta I, Porkka-Heiskanen T, Scarbrough K, Tapanainen J, Turek FW, Hsueh AJ. Photoperiod regulates testis cell apoptosis in Djungarian hamsters. Biol Reprod. 1994;51(6):1315–21. https://doi.org/10.1095/biolreprod51.6.1315.
Article
CAS
PubMed
Google Scholar
Fogarty CE, Bergmann A. The sound of silence: signaling by apoptotic cells. Curr Top Dev Biol. 2015;114:241–65. https://doi.org/10.1016/bs.ctdb.2015.07.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16(6):329–44. https://doi.org/10.1038/nrm3999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell. 2009;17(2):279–89. https://doi.org/10.1016/j.devcel.2009.07.014.
Article
CAS
PubMed
Google Scholar
Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal. 2010;3:ra13.
PubMed
PubMed Central
Google Scholar
Wittig K, Kasper J, Seipp S, Leitz T. Evidence for an instructive role of apoptosis during the metamorphosis of Hydractinia echinata (Hydrozoa). Zoology (Jena). 2011;114(1):11–22. https://doi.org/10.1016/j.zool.2010.09.004.
Article
Google Scholar
Bilak A, Uyetake L, Su TT. Dying cells protect survivors from radiation-induced cell death in Drosophila. PLoS Genet. 2014;10(3):e1004220. https://doi.org/10.1371/journal.pgen.1004220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lauber K, Bohn E, Kröber SM, Xiao Y, Blumenthal SG, Lindemann RK, et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell. 2003;113(6):717–30. https://doi.org/10.1016/S0092-8674(03)00422-7.
Article
CAS
PubMed
Google Scholar
Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, et al. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J. 2008;22(8):2629–38. https://doi.org/10.1096/fj.08-107169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tseng A-S, Adams DS, Qiu D, Koustubhan P, Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol. 2007;301(1):62–9. https://doi.org/10.1016/j.ydbio.2006.10.048.
Article
CAS
PubMed
Google Scholar
Chambon J-P, Soule J, Pomies P, Fort P, Sahuquet A, Alexandre D, et al. Tail regression in Ciona intestinalis (Prochordate) involves a caspase-dependent apoptosis event associated with ERK activation. Development. 2002;129(13):3105–14. https://doi.org/10.1242/dev.129.13.3105.
Article
CAS
PubMed
Google Scholar
Jeffery WR. Programmed cell death in the ascidian embryo: modulation by FoxA5 and Manx and roles in the evolution of larval development. Mech Dev. 2002;118(1-2):111–24. https://doi.org/10.1016/S0925-4773(02)00236-8.
Article
CAS
PubMed
Google Scholar
Krasovec G, Robine K, Quéinnec E, Karaiskou A, Chambon JP. Ci-hox12 tail gradient precedes and participates in the control of the apoptotic-dependent tail regression during Ciona larva metamorphosis. Dev Biol. 2019;448(2):237–46. https://doi.org/10.1016/j.ydbio.2018.12.010.
Article
CAS
PubMed
Google Scholar
Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A. Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development. 2006;133(14):2683–93. https://doi.org/10.1242/dev.02446.
Article
CAS
PubMed
Google Scholar
Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature. 2006;439(7079):965–8. https://doi.org/10.1038/nature04336.
Article
CAS
PubMed
Google Scholar
Kawai N, Ogura Y, Ikuta T, Saiga H, Hamada M, Sakuma T, et al. Hox10-regulated endodermal cell migration is essential for development of the ascidian intestine. Dev Biol. 2015;403(1):43–56. https://doi.org/10.1016/j.ydbio.2015.03.018.
Article
CAS
PubMed
Google Scholar
Nakayama A, Satou Y, Satoh N. Isolation and characterization of genes that are expressed during Ciona intestinalis metamorphosis. Dev Genes Evol. 2001;211(4):184–9. https://doi.org/10.1007/s004270100133.
Article
CAS
PubMed
Google Scholar
Nakayama A, Satou Y, Satoh N. Further characterization of genes expressed during Ciona intestinalis metamorphosis. Differentiation. 2002;70(8):429–37. https://doi.org/10.1046/j.1432-0436.2002.700805.x.
Article
CAS
PubMed
Google Scholar
Chambon J-P, Nakayama A, Takamura K, McDougall A, Satoh N. ERK- and JNK-signalling regulate gene networks that stimulate metamorphosis and apoptosis in tail tissues of ascidian tadpoles. Development. 2007;134(6):1203–19. https://doi.org/10.1242/dev.002220.
Article
CAS
PubMed
Google Scholar
Terasaki AG, Hiruta J, Suzuki J, Sakamoto S, Nishioka T, Suzuki H, et al. A lasp family protein of Ciona intestinalis. Biochim Biophys Acta. 1779;2008(1):51–9. https://doi.org/10.1016/j.bbagrm.2007.08.001.
Article
CAS
Google Scholar
Kusakabe T, Yoshida R, Kawakami I, Kusakabe R, Mochizuki Y, Yamada L, et al. Gene expression profiles in tadpole larvae of Ciona intestinalis. Dev Biol. 2002;242(2):188–203. https://doi.org/10.1006/dbio.2002.0538.
Article
PubMed
Google Scholar
Wang S, Lei Y, Cai Z, Ye X, Li L, Luo X, et al. Girdin regulates the proliferation and apoptosis of pancreatic cancer cells via the PI3K/Akt signalling pathway. Oncol Rep. 2018;40(2):599–608. https://doi.org/10.3892/or.2018.6469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoshi H, Sawada T, Uchida M, Iijima H, Kimura K, Hirakawa K, et al. MUC5AC protects pancreatic cancer cells from TRAIL-induced death pathways. Int J Oncol. 2013;42(3):887–93. https://doi.org/10.3892/ijo.2013.1760.
Article
CAS
PubMed
Google Scholar
Nonn L, Williams RR, Erickson RP, Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol Cell Biol. 2003;23(3):916–22. https://doi.org/10.1128/MCB.23.3.916-922.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, et al. Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 2002;21(7):1695–703. https://doi.org/10.1093/emboj/21.7.1695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker A, Santos BD, Powis G. Redox control of caspase-3 activity by thioredoxin and other reduced proteins. Biochem Biophys Res Commun. 2000;268(1):78–81. https://doi.org/10.1006/bbrc.1999.1908.
Article
CAS
PubMed
Google Scholar
Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol. 2005;1(3):154–8. https://doi.org/10.1038/nchembio720.
Article
CAS
PubMed
Google Scholar
Reyland ME. Protein kinase C isoforms: Multi-functional regulators of cell life and death. Front Biosci (Landmark Ed). 2009;14:2386–99.
Wang X, Ye X, Ji J, Wang J, Xu B, Zhang Q, et al. MicroRNA-155 targets myosin light chain kinase to inhibit the migration of human bone marrow-derived mesenchymal stem cells. Int J Mol Med. 2018;42(3):1585–92. https://doi.org/10.3892/ijmm.2018.3718.
Article
CAS
PubMed
Google Scholar
Schmid M, Prajczer S, Gruber LN, Bertocchi C, Gandini R, Pfaller W, et al. Uromodulin facilitates neutrophil migration across renal epithelial monolayers. Cell Physiol Biochem. 2010;26(3):311–8. https://doi.org/10.1159/000320554.
Article
CAS
PubMed
Google Scholar
Grunewald TGP, Kammerer U, Schulze E, Schindler D, Honig A, Zimmer M, et al. Silencing of LASP-1 influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Exp Cell Res. 2006;312(7):974–82. https://doi.org/10.1016/j.yexcr.2005.12.016.
Article
CAS
PubMed
Google Scholar
Lin YH, Park Z-Y, Lin D, Brahmbhatt AA, Rio M-C, Yates JR, et al. Regulation of cell migration and survival by focal adhesion targeting of Lasp-1. J Cell Biol. 2004;165(3):421–32. https://doi.org/10.1083/jcb.200311045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spiegel S, English D, Milstien S. Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol. 2002;12(5):236–42. https://doi.org/10.1016/S0962-8924(02)02277-8.
Article
CAS
PubMed
Google Scholar
Kassmer SH, Rodriguez D, Langenbacher AD, Bui C, De Tomaso AW. Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate. Nat Commun. 2015;6(1):8565. https://doi.org/10.1038/ncomms9565.
Article
CAS
PubMed
Google Scholar
Jeffery WR, Gorički Š. Apoptosis is a generator of Wnt-dependent regeneration and homeostatic cell renewal in the ascidian Ciona. Biol Open. 2021;10:bio058526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffery WR. Distal regeneration involves the age dependent activity of branchial sac stem cells in the ascidian Ciona intestinalis. Regeneration (Oxf). 2015;2(1):1–18. https://doi.org/10.1002/reg2.26.
Article
CAS
Google Scholar
Auger H, Sasakura Y, Joly J-S, Jeffery WR. Regeneration of oral siphon pigment organs in the ascidian Ciona intestinalis. Dev Biol. 2010;339(2):374–89. https://doi.org/10.1016/j.ydbio.2009.12.040.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffery WR. Regeneration, stem cells, and aging in the tunicate Ciona: insights from the Oral siphon. Int Rev Cell Mol Biol. 2015;319:255–82. https://doi.org/10.1016/bs.ircmb.2015.06.005.
Article
CAS
PubMed
Google Scholar
Jeffery WR. Progenitor targeting by adult stem cells in Ciona homeostasis, injury, and regeneration. Dev Biol. 2019;448(2):279–90. https://doi.org/10.1016/j.ydbio.2018.09.005.
Article
CAS
PubMed
Google Scholar
Tiozzo S, Ballarin L, Burighel P, Zaniolo G. Programmed cell death in vegetative development: apoptosis during the colonial life cycle of the ascidian Botryllus schlosseri. Tissue Cell. 2006;38(3):193–201. https://doi.org/10.1016/j.tice.2006.02.003.
Article
CAS
PubMed
Google Scholar
Franchi N, Ballin F, Manni L, Schiavon F, Basso G, Ballarin L. Recurrent phagocytosis-induced apoptosis in the cyclical generation change of the compound ascidian Botryllus schlosseri. Dev Comp Immunol. 2016;62:8–16. https://doi.org/10.1016/j.dci.2016.04.011.
Article
CAS
PubMed
Google Scholar
Ballarin L, Schiavon F, Manni L. Natural apoptosis during the blastogenetic cycle of the colonial ascidian Botryllus schlosseri: a morphological analysis. Zool Sci. 2010;27(2):96–102. https://doi.org/10.2108/zsj.27.96.
Article
Google Scholar
Manni L, Zaniolo G, Cima F, Burighel P, Ballarin L. Botryllus schlosseri: a model ascidian for the study of asexual reproduction. Dev Dyn. 2007;236(2):335–52. https://doi.org/10.1002/dvdy.21037.
Article
CAS
PubMed
Google Scholar
Voskoboynik A, Weissman IL. Botryllus schlosseri, an emerging model for the study of aging, stem cells, and mechanisms of regeneration. Invertebr Reprod Dev. 2015;59(sup1):33–8. https://doi.org/10.1080/07924259.2014.944673.
Article
PubMed
Google Scholar
Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001;193(2):247–54. https://doi.org/10.1084/jem.193.2.247.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishizaki Y, Jacobson MD, Raff MC. A role for caspases in lens fiber differentiation. J Cell Biol. 1998;140(1):153–8. https://doi.org/10.1083/jcb.140.1.153.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M. Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci U S A. 2010;107(30):13366–71. https://doi.org/10.1073/pnas.0910488107.
Article
PubMed
PubMed Central
Google Scholar
Denecker G, Ovaere P, Vandenabeele P, Declercq W. Caspase-14 reveals its secrets. J Cell Biol. 2008;180(3):451–8. https://doi.org/10.1083/jcb.200709098.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanuka H, Kuranaga E, Takemoto K, Hiratou T, Okano H, Miura M. Drosophila caspase transduces shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J. 2005;24(21):3793–806. https://doi.org/10.1038/sj.emboj.7600822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Q, Li F, Liu X, Li W, Shi W, Liu F-F, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011;17(7):860–6. https://doi.org/10.1038/nm.2385.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28(8):1086–92. https://doi.org/10.1093/bioinformatics/bts094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Vizzini A, Pergolizzi M, Vazzana M, Salerno G, Di Sano C, Macaluso P, et al. FACIT collagen (1alpha-chain) is expressed by hemocytes and epidermis during the inflammatory response of the ascidian Ciona intestinalis. Dev Comp Immunol. 2008;32(6):682–92. https://doi.org/10.1016/j.dci.2007.10.006.
Article
CAS
PubMed
Google Scholar
Christiaen L, Wagner E, Shi W, Levine M. Whole-mount in situ hybridization on sea squirt (Ciona intestinalis) embryos. Cold Spring Harb Protoc. 2009;2009:pdb.prot5348.