Tyson JJ, Novak B. Temporal organization of the cell cycle. Curr Biol. 2008;18(17):R759–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer. 2005;5(10):773–85.
Article
CAS
PubMed
Google Scholar
Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Dev (Cambridge, England). 2013;140(15):3079–93.
Article
CAS
Google Scholar
Malumbres M, Harlow E, Hunt T, Hunter T, Lahti JM, Manning G, et al. Cyclin-dependent kinases: a family portrait. Nat Cell Biol. 2009;11(11):1275–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arellano M, Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. Int J Biochem Cell Biol. 1997;29(4):559–73.
Article
CAS
PubMed
Google Scholar
King RW, Jackson PK, Kirschner MW. Mitosis in transition. Cell. 1994;79(4):563–71.
Article
CAS
PubMed
Google Scholar
Morgan DO. Principles of CDK regulation. Nature. 1995;374(6518):131–4.
Article
CAS
PubMed
Google Scholar
Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261–91.
Article
CAS
PubMed
Google Scholar
Johnson LN, Lewis RJ. Structural basis for control by phosphorylation. Chem Rev. 2001;101(8):2209–42.
Article
CAS
PubMed
Google Scholar
Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355–65.
Article
CAS
PubMed
Google Scholar
Ubersax JA, Ferrell JE Jr. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol. 2007;8(7):530–41.
Article
CAS
PubMed
Google Scholar
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127(3):635–48.
Article
CAS
PubMed
Google Scholar
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.
Article
CAS
PubMed
Google Scholar
Johnson LN. Protein kinase inhibitors: contributions from structure to clinical compounds. Q Rev Biophys. 2009;42(1):1–40.
Article
CAS
PubMed
Google Scholar
Noble ME, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science. 2004;303(5665):1800–5.
Article
CAS
PubMed
Google Scholar
Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353(2):172–87.
Article
CAS
PubMed
Google Scholar
Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008;31(3):438–48.
Article
CAS
PubMed
Google Scholar
Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA, Korner R. Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res. 2009;8(10):4553–63.
Article
CAS
PubMed
Google Scholar
Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008;105(31):10762–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature. 1991;349(6305):132–8.
Article
CAS
PubMed
Google Scholar
Dynlacht BD. Regulation of transcription by proteins that control the cell cycle. Nature. 1997;389(6647):149–52.
Article
CAS
PubMed
Google Scholar
Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol. 2006;26(7):2736–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trembley JH, Loyer P, Hu D, Li T, Grenet J, Lahti JM, et al. Cyclin dependent kinase 11 in RNA transcription and splicing. Prog Nucleic Acid Res Mol Biol. 2004;77:263–88.
Article
CAS
PubMed
Google Scholar
Pyronnet S, Sonenberg N. Cell-cycle-dependent translational control. Curr Opin Genet Dev. 2001;11(1):13–8.
Article
CAS
PubMed
Google Scholar
Bu X, Haas DW, Hagedorn CH. Novel phosphorylation sites of eukaryotic initiation factor-4F and evidence that phosphorylation stabilizes interactions of the p25 and p220 subunits. J Biol Chem. 1993;268(7):4975–8.
CAS
PubMed
Google Scholar
Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 1999;18(1):270–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004;23(8):1761–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duchaine TF, Hemraj I, Furic L, Deitinghoff A, Kiebler MA, DesGroseillers L. Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. J Cell Sci. 2002;115(Pt 16):3285–95.
CAS
PubMed
Google Scholar
Tang SJ, Meulemans D, Vazquez L, Colaco N, Schuman E. A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites. Neuron. 2001;32(3):463–75.
Article
CAS
PubMed
Google Scholar
Maher-Laporte M, Berthiaume F, Moreau M, Julien LA, Lapointe G, Mourez M, et al. Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain. PLoS One. 2010;5(6):e11350.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mallardo M, Deitinghoff A, Muller J, Goetze B, Macchi P, Peters C, et al. Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc Natl Acad Sci U S A. 2003;100(4):2100–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allison R, Czaplinski K, Git A, Adegbenro E, Stennard F, Houliston E, et al. Two distinct Staufen isoforms in Xenopus are vegetally localized during oogenesis. RNA. 2004;10(11):1751–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goetze B, Tuebing F, Xie Y, Dorostkar MM, Thomas S, Pehl U, et al. The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis. J Cell Biol. 2006;172(2):221–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong JH, Nam YJ, Kim SY, Kim EG, Jeong J, Kim HK. The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway. J Neurochem. 2007;102(6):2073–84.
Article
CAS
PubMed
Google Scholar
Nam YJ, Cheon HS, Choi YK, Kim SY, Shin EY, Kim EG, et al. Role of mitogen-activated protein kinase (MAPK) docking sites on Staufen2 protein in dendritic mRNA transport. Biochem Biophys Res Commun. 2008;372(4):525–9.
Article
CAS
PubMed
Google Scholar
Ramasamy S, Wang H, Quach HN, Sampath K. Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells. Dev Biol. 2006;292(2):393–406.
Article
CAS
PubMed
Google Scholar
Thomas MG, Martinez Tosar LJ, Loschi M, Pasquini JM, Correale J, Kindler S, et al. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol Biol Cell. 2005;16(1):405–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Carbente M, DesGroseillers L. Understanding the importance of mRNA transport in memory. Prog Brain Res. 2008;169:41–58.
Article
CAS
Google Scholar
Lebeau G, Miller LC, Tartas M, McAdam R, Laplante I, Badeaux F, et al. Staufen 2 regulates mGluR long-term depression and Map1b mRNA distribution in hippocampal neuron. Learn Mem. 2011;18(5):314–26.
Article
CAS
PubMed
Google Scholar
Mikl M, Vendra G, Kiebler MA. Independent localization of MAP2, CaMKIIalpha and beta-actin RNAs in low copy numbers. EMBO Rep. 2011;12(10):1077–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miki T, Kamikawa Y, Kurono S, Kaneko Y, Katahira J, Yoneda Y. Cell type-dependent gene regulation by Staufen2 in conjunction with Upf1. BMC Mol Biol. 2011;12:48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park E, Gleghorn ML, Maquat LE. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc Natl Acad Sci U S A. 2013;110(2):405–12.
Article
CAS
PubMed
Google Scholar
O'Leary DA, Sharif O, Anderson P, Tu B, Welch G, Zhou Y, et al. Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening. PLoS One. 2009;4(12):e8348.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maher-Laporte M, DesGroseillers L. Genome wide identification of Staufen2-bound mRNAs in embryonic rat brains. BMB Rep. 2010;43(5):344–8.
Article
CAS
PubMed
Google Scholar
Furic L, Maher-Laporte M, DesGroseillers L. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes. RNA. 2008;14(2):324–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vessey JP, Amadei G, Burns SE, Kiebler MA, Kaplan DR, Miller FD. An asymmetrically localized Staufen2-dependent RNA complex regulates maintenance of mammalian neural stem cells. Cell Stem Cell. 2012;11(4):517–28.
Article
CAS
PubMed
Google Scholar
Kusek G, Campbell M, Doyle F, Tenenbaum SA, Kiebler M, Temple S. Asymmetric segregation of the double-stranded RNA binding protein Staufen2 during mammalian neural stem cell divisions promotes lineage progression. Cell Stem Cell. 2012;11(4):505–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilogan CK, Horb ME. Xenopus staufen2 is required for anterior endodermal organ formation. Genesis. 2012;50(3):251–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cockburn DM, Charish J, Tassew NG, Eubanks J, Bremner R, Macchi P, et al. The double-stranded RNA-binding protein Staufen 2 regulates eye size. Mol Cell Neurosci. 2012;51(3–4):101–11.
Article
CAS
PubMed
Google Scholar
Zhang X, Trepanier V, Beaujois R, Viranaicken W, Drobetsky E, DesGroseillers L. The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis. Nucleic Acids Res. 2016;44(8):3695–712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harper JV. Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol Biol. 2005;296:157–66.
CAS
PubMed
Google Scholar
Martel C, Dugre-Brisson S, Boulay K, Breton B, Lapointe G, Armando S, et al. Multimerization of Staufen1 in live cells. RNA. 2010;16(3):585–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vassilev LT. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle. 2006;5(22):2555–6.
Article
CAS
PubMed
Google Scholar
Boulay K, Ghram M, Viranaicken W, Trepanier V, Mollet S, Frechina C, et al. Cell cycle-dependent regulation of the RNA-binding protein Staufen1. Nucleic Acids Res. 2014;42(12):7867–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2012;40(Database issue):D261–70.
Article
CAS
PubMed
Google Scholar
Li P, Yang X, Wasser M, Cai Y, Chia W. Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during drosophila neuroblast cell divisions. Cell. 1997;90(3):437–47.
Article
CAS
PubMed
Google Scholar
Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, et al. Identification of non-ser/Thr-pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. Sci Rep. 2015;5:7929.
Luo M, Duchaine TF, DesGroseillers L. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem J. 2002;365(Pt 3):817–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham L, Duchaine T, Luo M, Nabi IR, DesGroseillers L. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol Cell Biol. 1999;19(3):2220–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiebler MA, Hemraj I, Verkade P, Kohrmann M, Fortes P, Marion RM, et al. The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J Neurosci. 1999;19(1):288–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao Y, Du J, Chen D, Wang Q, Zhang N, Liu X, et al. RNA- binding protein Stau2 is important for spindle integrity and meiosis progression in mouse oocytes. Cell Cycle. 2016;15(19):2608–18.
Article
CAS
PubMed
PubMed Central
Google Scholar