Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284: 143-147. 10.1126/science.284.5411.143.
Article
CAS
PubMed
Google Scholar
Bieback K, Kern S, Kluter H, Eichler H: Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004, 22: 625-634. 10.1634/stemcells.22-4-625.
Article
PubMed
Google Scholar
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002, 13: 4279-4295. 10.1091/mbc.E02-02-0105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Okura H, Komoda H, Saga A, Kakuta-Yamamoto A, Hamada Y, Fumimoto Y, Lee CM, Ichinose A, Sawa Y, Matsuyama A: Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells. Tissue Eng Part C Methods. 2010, 16: 761-770. 10.1089/ten.tec.2009.0208.
Article
CAS
PubMed
Google Scholar
Okura H, Matsuyama A, Lee CM, Saga A, Kakuta-Yamamoto A, Nagao A, Sougawa N, Sekiya N, Takekita K, Shudo Y: Cardiomyoblast-like cells differentiated from human adipose tissue-derived mesenchymal stem cells improve left ventricular dysfunction and survival in a rat myocardial infarction model. Tissue Eng Part C Methods. 2010, 16: 417-425. 10.1089/ten.tec.2009.0362.
Article
CAS
PubMed
Google Scholar
Komoda H, Okura H, Lee CM, Sougawa N, Iwayama T, Hashikawa T, Saga A, Yamamoto-Kakuta A, Ichinose A, Murakami S, Sawa Y, Matsuyama A: Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Eng Part A. 2010, 16: 1143-1155. 10.1089/ten.tea.2009.0386.
Article
CAS
PubMed
Google Scholar
Okura H, Komoda H, Fumimoto Y, Lee CM, Nishida T, Sawa Y, Matsuyama A: Transdifferentiation of human adipose tissue-derived stromal cells into insulin-producing clusters. J Artif Organs. 2009, 12: 123-130. 10.1007/s10047-009-0455-6.
Article
CAS
PubMed
Google Scholar
Safford KM, Safford SD, Gimble JM, Shetty AK, Rice HE: Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol. 2004, 187: 319-328. 10.1016/j.expneurol.2004.01.027.
Article
CAS
PubMed
Google Scholar
Leu S, Lin YC, Yuen CM, Yen CH, Kao YH, Sun CK, Yip HK: Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J Transl Med. 2010, 8: 63-10.1186/1479-5876-8-63.
Article
PubMed Central
PubMed
Google Scholar
Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka Y, Egashira Y, Nakashima S, Yoshimura S, Iwama T: Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy. 2011, 13: 675-685. 10.3109/14653249.2010.549122.
Article
CAS
PubMed
Google Scholar
Tan B, Luan Z, Wei X, He Y, Wei G, Johnstone BH, Farlow M, Du Y: AMP-activated kinase mediates adipose stem cell-stimulated neuritogenesis of PC12 cells. Neuroscience. 2011, 181: 40-47.
Article
CAS
PubMed
Google Scholar
Reid AJ, Sun M, Wiberg M, Downes S: Terenghi G. 2011, Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, Kingham PJ
Google Scholar
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL: Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004, 109: 1292-1298. 10.1161/01.CIR.0000121425.42966.F1.
Article
PubMed
Google Scholar
Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, Park BS, Sung JH: Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009, 17: 540-547. 10.1111/j.1524-475X.2009.00499.x.
Article
PubMed
Google Scholar
Lu S, Lu C, Han Q, Li J, Du Z, Liao L, Zhao RC: Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology. 2011, 279: 189-195. 10.1016/j.tox.2010.10.011.
Article
CAS
PubMed
Google Scholar
McCoy MK, Martinez TN, Ruhn KA, Wrage PC, Keefer EW, Botterman BR, Tansey KE, Tansey MG: Autologous transplants of Adipose-Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson's disease. Exp Neurol. 2008, 210: 14-29. 10.1016/j.expneurol.2007.10.011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Flamm ES, Demopoulos HB, Seligman ML, Poser RG, Ransohoff J: Free radicals in cerebral ischemia. Stroke. 1978, 9: 445-447. 10.1161/01.STR.9.5.445.
Article
CAS
PubMed
Google Scholar
Alexandrova ML, Bochev PG: Oxidative stress during the chronic phase after stroke. Free Radic Biol Med. 2005, 39: 297-316. 10.1016/j.freeradbiomed.2005.04.017.
Article
CAS
PubMed
Google Scholar
Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004, 4: 181-189. 10.1038/nri1312.
Article
CAS
PubMed
Google Scholar
Simpson JE, Ince PG, Haynes LJ, Theaker R, Gelsthorpe C, Baxter L, Forster G, Lace GL, Shaw PJ, Matthews FE, Savva GM, Brayne C, Wharton SB, MRC Cognitive Function and Ageing Neuropathology Study Group: Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathol Appl Neurobiol. 2010, 36: 25-40. 10.1111/j.1365-2990.2009.01030.x.
Article
CAS
PubMed
Google Scholar
Cai Z, Zhao B, Ratka A: Oxidative Stress and beta-Amyloid Protein in Alzheimer's Disease. Neuromolecular Med. 2011, 13: 223-250. 10.1007/s12017-011-8155-9.
Article
CAS
PubMed
Google Scholar
Beal MF: Mitochondria, oxidative damage, and inflammation in Parkinson's disease. Ann N Y Acad Sci. 2003, 991: 120-131.
Article
CAS
PubMed
Google Scholar
Henchcliffe C, Beal MF: Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008, 4: 600-609.
Article
CAS
PubMed
Google Scholar
Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R: Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Brain Res Rev. 2005, 48: 251-256.
Article
CAS
PubMed
Google Scholar
Colton CA, Chernyshev ON, Gilbert DL, Vitek MP: Microglial contribution to oxidative stress in Alzheimer's disease. Ann N Y Acad Sci. 2000, 899: 292-307.
Article
CAS
PubMed
Google Scholar
Hayashi H, Ishisaki A, Suzuki M, Imamura T: BMP-2 augments FGF-induced differentiation of PC12 cells through upregulation of FGF receptor-1 expression. J Cell Sci. 2001, 114: 1387-1395.
CAS
PubMed
Google Scholar
Hayashi H, Ishisaki A, Imamura T: Smad mediates BMP-2-induced upregulation of FGF-evoked PC12 cell differentiation. FEBS Lett. 2003, 536: 30-34. 10.1016/S0014-5793(03)00005-X.
Article
CAS
PubMed
Google Scholar
Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO: Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways?. J Signal Transduct. 2011, 2011: 792639-
Article
PubMed Central
PubMed
Google Scholar
Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, Ohmura M, Naka K, Hosokawa K, Ikeda Y, Suda T: Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006, 12: 446-451. 10.1038/nm1388.
Article
CAS
PubMed
Google Scholar
Raingeaud J, Whitmarsh AJ, Barrett T, Derijard B, Davis RJ: MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996, 16: 1247-1255.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feng JQ, Xing L, Zhang JH, Zhao M, Horn D, Chan J, Boyce BF, Harris SE, Mundy GR, Chen D: NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem. 2003, 278: 29130-29135. 10.1074/jbc.M212296200.
Article
CAS
PubMed
Google Scholar
Vermeulen L, De Wilde G, Van Damme P: Vanden Berghe W, Haegeman G: Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J. 2003, 22: 1313-1324. 10.1093/emboj/cdg139.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rasmussen JG, Frobert O, Pilgaard L, Kastrup J, Simonsen U, Zachar V, Fink T: Prolonged hypoxic culture and trypsinization increase the pro-angiogenic potential of human adipose tissue-derived stem cells. Cytotherapy. 2011, 13: 318-328. 10.3109/14653249.2010.506505.
Article
CAS
PubMed
Google Scholar
Parikh P, Hao Y, Hosseinkhani M, Patil SB, Huntley GW, Tessier-Lavigne M, Zou H: Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A. 2011, 108: E99-E107. 10.1073/pnas.1100426108.
Article
PubMed Central
PubMed
Google Scholar
Ma CH, Brenner GJ, Omura T, Samad OA, Costigan M, Inquimbert P, Niederkofler V, Salie R, Sun CC, Lin HY, Arber S, Coppola G, Woolf CJ, Samad TA: The BMP coreceptor RGMb promotes while the endogenous BMP antagonist noggin reduces neurite outgrowth and peripheral nerve regeneration by modulating BMP signaling. J Neurosci. 2011, 31: 18391-18400. 10.1523/JNEUROSCI.4550-11.2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jordan J, Bottner M, Schluesener HJ, Unsicker K, Krieglstein K: Bone morphogenetic proteins: neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. Eur J Neurosci. 1997, 9: 1699-1709. 10.1111/j.1460-9568.1997.tb01527.x.
Article
CAS
PubMed
Google Scholar
Reiriz J, Espejo M, Ventura F, Ambrosio S, Alberch J: Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. J Neurobiol. 1999, 38: 161-170. 10.1002/(SICI)1097-4695(19990205)38:2<161::AID-NEU1>3.0.CO;2-3.
Article
CAS
PubMed
Google Scholar
Stull ND, Jung JW, Iacovitti L: Induction of a dopaminergic phenotype in cultured striatal neurons by bone morphogenetic proteins. Brain Res Dev Brain Res. 2001, 130: 91-98.
Article
CAS
PubMed
Google Scholar
Anitha M, Shahnavaz N, Qayed E, Joseph I, Gossrau G, Mwangi S, Sitaraman SV, Greene JG, Srinivasan S: BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol. 2010, 298: G375-G383. 10.1152/ajpgi.00343.2009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D, Kimura F, Dezawa M, Coffin RS, Otsuki Y, Kuroiwa T, Miyatake S: Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke. 2005, 36: 2725-2730. 10.1161/01.STR.0000190006.88896.d3.
Article
CAS
PubMed
Google Scholar
Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, Roth J: Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood. 2004, 103: 3365-3373. 10.1182/blood-2003-09-3296.
Article
CAS
PubMed
Google Scholar
Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K: U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem. 2002, 277: 47366-47372. 10.1074/jbc.M208284200.
Article
CAS
PubMed
Google Scholar
Shimo T, Matsumura S, Ibaragi S, Isowa S, Kishimoto K, Mese H, Nishiyama A, Sasaki A: Specific inhibitor of MEK-mediated cross-talk between ERK and p38 MAPK during differentiation of human osteosarcoma cells. J Cell Commun Signal. 2007, 1: 103-111. 10.1007/s12079-007-0010-2.
Article
PubMed Central
PubMed
Google Scholar
Al-Shanti N, Stewart CE: PD98059 enhances C2 myoblast differentiation through p38 MAPK activation: a novel role for PD98059. J Endocrinol. 2008, 198: 243-252. 10.1677/JOE-08-0151.
Article
CAS
PubMed
Google Scholar
Okura H, Saga A, Fumimoto Y, Soeda M, Moriyama M, Moriyama H, Nagai K, Lee CM, Yamashita S, Ichinose A, Hayakawa T, Matsuyama A: Transplantation of human adipose tissue-derived multilineage progenitor cells reduces serum cholesterol in hyperlipidemic Watanabe rabbits. Tissue Eng Part C Methods. 2011, 17: 145-154. 10.1089/ten.tec.2010.0139.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saga A, Okura H, Soeda M, Tani J, Fumimoto Y, Komoda H, Moriyama M, Moriyama H, Yamashita S, Ichinose A, Daimon T, Hayakawa T, Matsuyama A: HMG-CoA reductase inhibitor augments the serum total cholesterol-lowering effect of human adipose tissue-derived multilineage progenitor cells in hyperlipidemic homozygous Watanabe rabbits. Biochem Biophys Res Commun. 2011, 412: 50-54. 10.1016/j.bbrc.2011.07.035.
Article
CAS
PubMed
Google Scholar