Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, Sherry B, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012;42(6):563–70.
Article
PubMed
Google Scholar
Trasande L, Elbel B. The economic burden placed on healthcare systems by childhood obesity. Expert Rev Pharmacoecon Outcomes Res. 2012;12(1):39–45.
Article
PubMed
Google Scholar
Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr. 1994;59(5):955–9.
Article
CAS
PubMed
Google Scholar
Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes. 2008;32(Suppl 7):S62–71.
Article
CAS
Google Scholar
Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp Physiol. 2007;92(2):287–98.
Article
CAS
PubMed
Google Scholar
Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opinion Endocrinol Diab Obesity. 2013;20(1):56–61.
Article
CAS
Google Scholar
Hauner H, Vollhardt C, Schneider KT, Zimmermann A, Schuster T, Amann-Gassner U. The impact of nutritional fatty acids during pregnancy and lactation on early human adipose tissue development. Rationale and design of the INFAT study. Ann Nutr Metab. 2009;54(2):97–103.
Article
CAS
PubMed
Google Scholar
Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47(2):147–55.
Article
CAS
PubMed
Google Scholar
Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr. 2005;25:317–40.
Article
CAS
PubMed
Google Scholar
Sedlmeier EM, Brunner S, Much D, Pagel P, Ulbrich SE, Meyer HH, et al. Human placental transcriptome shows sexually dimorphic gene expression and responsiveness to maternal dietary n-3 long-chain polyunsaturated fatty acid intervention during pregnancy. BMC Genomics. 2014;15:941.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Z, He P, Ding X, Huang Y, Gu H, Ni X. PPARgamma stimulates expression of L-type amino acid and taurine transporters in human placentas: the evidence of PPARgamma regulating fetal growth. Sci Rep. 2015;5:12650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roos S, Powell TL, Jansson T. Placental mTOR links maternal nutrient availability to fetal growth. Biochem Soc Trans. 2009;37(Pt 1):295–8.
Article
CAS
PubMed
Google Scholar
Desoye G, Shafrir E. Placental metabolism and its regulation in health and diabetes. Mol Asp Med. 1994;15(6):505–682.
Article
CAS
Google Scholar
Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114(5–6):397–407.
Article
CAS
PubMed
Google Scholar
Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35(7):595–601.
Article
CAS
PubMed
Google Scholar
Jansson T, Aye IL, Goberdhan DC. The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta. 2012;33:e23–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farago N, Feher LZ, Kitajka K, Das UN, Puskas LG. MicroRNA profile of polyunsaturated fatty acid treated glioma cells reveal apoptosis-specific expression changes. Lipids Health Dis. 2011;10:173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandal CC, Ghosh-Choudhury T, Dey N, Ghosh CG, Ghosh-Choudhury N. MiR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis. 2012;33(10):1897–908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun C, Alkhoury K, Wang Y, Foster GA, Radecke CE, Tam K, et al. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high fat meal. Circ Res. 2012;111(8):1054–64.
Article
CAS
PubMed
Google Scholar
Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586–93.
Article
CAS
PubMed
Google Scholar
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.
Article
CAS
PubMed
Google Scholar
Vasudevan S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA. 2012;3(3):311–30.
Article
CAS
PubMed
Google Scholar
Hilton C, Neville MJ, Karpe F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes. 2013;37(3):325–32.
Article
CAS
Google Scholar
McGregor RA, Choi MS. MicroRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011;11(4):304–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One. 2010;5(2):e9022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams MD, Mitchell GM. MicroRNAs in insulin resistance and obesity. Exp Diabetes Res. 2012;2012:484696.
Article
PubMed
PubMed Central
CAS
Google Scholar
Donker RB, Mouillet JF, Nelson DM, Sadovsky Y. The expression of Argonaute2 and related microRNA biogenesis proteins in normal and hypoxic trophoblasts. Mol Hum Reprod. 2007;13(4):273–9.
Article
CAS
PubMed
Google Scholar
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miura K, Miura S, Yamasaki K, Higashijima A, Kinoshita A, Yoshiura K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem. 2010;56(11):1767–71.
Article
CAS
PubMed
Google Scholar
Hauner H, Much D, Vollhardt C, Brunner S, Schmid D, Sedlmeier EM, et al. Effect of reducing the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on infant adipose tissue growth within the first year of life: an open-label randomized controlled trial. Am J Clin Nutr. 2012;95(2):383–94.
Article
CAS
PubMed
Google Scholar
Much D, Brunner S, Vollhardt C, Schmid D, Sedlmeier EM, Bruderl M, et al. Effect of dietary intervention to reduce the n-6/n-3 fatty acid ratio on maternal and fetal fatty acid profile and its relation to offspring growth and body composition at 1 year of age. Eur J Clin Nutr. 2013;67(3):282–8.
Article
CAS
PubMed
Google Scholar
Brei C, Stecher L, Much D, Karla MT, Amann-Gassner U, Shen J, et al. Reduction of the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on offspring body composition: follow-up results from a randomized controlled trial up to 5 y of age. Am J Clin Nutr. 2016;103(6):1472–81.
Article
CAS
PubMed
Google Scholar
Meyer DM, Brei C, Stecher L, Much D, Brunner S, Hauner H. Associations between long-chain PUFAs in maternal blood, cord blood, and breast milk and offspring body composition up to 5 years: follow-up from the INFAT study. Eur J Clin Nutr. 2019;73(3):458–64.
Article
CAS
PubMed
Google Scholar
Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE, et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes. Mol Hum Reprod. 2012;18(8):417–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ling HY, Ou HS, Feng SD, Zhang XY, Tuo QH, Chen LX, et al. Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol. 2009;36(9):e32–9.
Article
CAS
PubMed
Google Scholar
Doghman M, El Wakil A, Cardinaud B, Thomas E, Wang J, Zhao W, et al. Regulation of insulin-like growth factor-mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors. Cancer Res. 2010;70(11):4666–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oneyama C, Ikeda J, Okuzaki D, Suzuki K, Kanou T, Shintani Y, et al. MicroRNA-mediated downregulation of mTOR/FGFR3 controls tumor growth induced by Src-related oncogenic pathways. Oncogene. 2011;30(32):3489–501.
Article
CAS
PubMed
Google Scholar
Sun D, Lee YS, Malhotra A, Kim HK, Matecic M, Evans C, et al. MiR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res. 2011;71(4):1313–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roos S, Kanai Y, Prasad PD, Powell TL, Jansson T. Regulation of placental amino acid transporter activity by mammalian target of rapamycin. Am J Physiol Cell Physiol. 2009;296(1):C142–50.
Article
CAS
PubMed
Google Scholar
Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, et al. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2012;40(Database issue):D222–9.
Article
CAS
PubMed
Google Scholar
Brummer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays. 2014;36(6):617–26.
Article
PubMed
CAS
Google Scholar
Zhang K, Zhang X, Cai Z, Zhou J, Cao R, Zhao Y, et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat Struct Mol Biol. 2018;25(11):1019–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17.
Article
CAS
PubMed
Google Scholar
Rinn JL, Snyder M. Sexual dimorphism in mammalian gene expression. Trends Genet. 2005;21:298–305.
Article
CAS
PubMed
Google Scholar
Isensee J, Ruiz NP. Sexually dimorphic gene expression in mammalian somatic tissue. Gend Med. 2007;4(Suppl B):S75–95.
Article
PubMed
Google Scholar
Elton TS, Sansom SE, Martin MM. Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biol. 2010;7(5):540–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukao A, Aoyama T, Fujiwara T. The molecular mechanism of translational control via the communication between the microRNA pathway and RNA-binding proteins. RNA Biol. 2015;12(9):922–6.
Article
PubMed
PubMed Central
Google Scholar
Gardini A. Global Run-On Sequencing (GRO-Seq). Methods Mol Biol. 2017;1468:111–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B. Er al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaveroux C, Eichner LJ, Dufour CR, Shatnawi A, Khoutorsky A, Bourque G, et al. Molecular and genetic crosstalks between mTOR and ERRα are key determinants of rapamycin-induced nonalcoholic fatty liver. Cell Metab. 2013;17(4):586–98.
Article
CAS
PubMed
Google Scholar
Lager S, Jansson T, Powell TL. Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. Am J Physiol Cell Physiol. 2014;307(8):C738–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roos S, Lagerlof O, Wennergren M, Powell TL, Jansson T. Regulation of amino acid transporters by glucose and growth factors in cultured primary human trophoblast cells is mediated by mTOR signaling. Am J Physiol Cell Physiol. 2009;297(3):C723–31.
Article
CAS
PubMed
Google Scholar
Rosario FJ, Dimasuay KG, Kanai Y, Powell TL, Jansson T. Regulation of amino acid transporter trafficking by mTORC1 in primary human trophoblast cells is mediated by the ubiquitin ligase Nedd4-2. Clin Sci (Lond). 2016;130(7):499–512.
Article
CAS
Google Scholar
Rosario FJ, Kanai Y, Powell TL, Jansson T. Mammalian target of rapamycin signalling modulates amino acid uptake by regulating transporter cell surface abundance in primary human trophoblast cells. J Physiol. 2013;591(3):609–25.
Article
CAS
PubMed
Google Scholar
Nardi F, Hoffmann TM, Stretton C, Cwiklinski E, Taylor PM, Hundal HS. Proteasomal modulation of cellular SNAT2 (SLC38A2) abundance and function by unsaturated fatty acid availability. J Biol Chem. 2015;290(13):8173–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lager S, Ramirez VI, Acosta O, Meireles C, Miller E, Gaccioli F, et al. Docosahexaenoic acid supplementation in pregnancy modulates placental cellular signaling and nutrient transport capacity in obese women. J Clin Endocrinol Metab. 2017;102(12):4557–67.
Article
PubMed
PubMed Central
Google Scholar
Friedrichs W, Ruparel SB, Marciniak RA, de Graffenried L. Omega-3 fatty acid inhibition of prostate cancer progression to hormone independence is associated with suppression of mTOR signaling and androgen receptor expression. Nutr Cancer. 2011;63(5):771–7.
Article
CAS
PubMed
Google Scholar
Jiang W, Zhu Z, McGinley JN, El Bayoumy K, Manni A, Thompson HJ. Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary n-3 fatty acids. Cancer Res. 2012;72(15):3795–806.
Article
CAS
PubMed
Google Scholar
Tang FY, Cho HJ, Pai MH, Chen YH. Concomitant supplementation of lycopene and eicosapentaenoic acid inhibits the proliferation of human colon cancer cells. J Nutr Biochem. 2009;20(6):426–34.
Article
CAS
PubMed
Google Scholar
Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond). 2011;121(6):267–78.
Article
CAS
Google Scholar
Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr. 2011;93(2):402–12.
Article
CAS
PubMed
Google Scholar
Gingras AA, White PJ, Chouinard PY, Julien P, Davis TA, Dombrowski L, et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J Physiol. 2007;579(Pt 1):269–84.
Article
CAS
PubMed
Google Scholar
Ramamoorthy S, Leibach FH, Mahesh VB, Han H, Yang-Feng T, Blakely RD, et al. Functional characterization and chromosomal localization of a cloned taurine transporter from human placenta. Biochem J. 1994;300(Pt 3):893–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Norberg S, Powell TL, Jansson T. Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr Res. 1998;44(2):233–8.
Article
CAS
PubMed
Google Scholar
Philipps AF, Holzman IR, Teng C, Battaglia FC. Tissue concentrations of free amino acids in term human placentas. Am J Obstet Gynecol. 1978;131(8):881–7.
Article
CAS
PubMed
Google Scholar
Sturman JA. Taurine in development. Physiol Rev. 1993;73(1):119–47.
Article
CAS
PubMed
Google Scholar
Roos S, Powell TL, Jansson T. Human placental taurine transporter in uncomplicated and IUGR pregnancies: cellular localization, protein expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2004;287(4):R886–93.
Article
CAS
PubMed
Google Scholar
Ditchfield AM, Desforges M, Mills TA, Glazier JD, Wareing M, Mynett K, et al. Maternal obesity is associated with a reduction in placental taurine transporter activity. Int J Obes. 2015;39(4):557–64.
Article
CAS
Google Scholar
Rigo J, Senterre J. Is taurine essential for the neonates? Biol Neonate. 1977;32(1–2):73–6.
Article
CAS
PubMed
Google Scholar
Holm MB, Kristiansen O, Holme AM, Bastani NE, Horne H, Blomhoff R, et al. Placental release of taurine to both the maternal and fetal circulations in human term pregnancies. Amino Acids. 2018;50(9):1205–14.
Article
CAS
PubMed
Google Scholar
Huang T, Wahlqvist ML, Li D. Effect of n-3 polyunsaturated fatty acid on gene expression of the critical enzymes involved in homocysteine metabolism. Nutr J. 2012;11:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang T, Zheng J, Chen Y, Yang B, Wahlqvist ML, Li D. High consumption of Omega-3 polyunsaturated fatty acids decrease plasma homocysteine: a meta-analysis of randomized, placebo-controlled trials. Nutrition. 2011;27(9):863–7.
Article
CAS
PubMed
Google Scholar
Badawy AA. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep. 2015;35(5):e00261.
Xu K, Liu G, Fu C. The tryptophan pathway targeting antioxidant capacity in the placenta. Oxidative Med Cell Longev. 2018;2018:1054797.
Google Scholar
Wang CC, Yang CJ, Wu LH, Lin HC, Wen ZH, Lee CH. Eicosapentaenoic acid reduces indoleamine 2,3-dioxygenase 1 expression in tumor cells. Int J Med Sci. 2018;15(12):1296–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandovici I, Hoelle K, Angiolini E, Constancia M. Placental adaptations to the maternal-fetal environment: implications for fetal growth and developmental programming. Reprod BioMed Online. 2012;25(1):68–89.
Article
PubMed
Google Scholar
Cho HJ, Park J, Lee HW, Lee YS, Kim JB. Regulation of adipocyte differentiation and insulin action with rapamycin. Biochem Biophys Res Commun. 2004;321(4):942–8.
Article
CAS
PubMed
Google Scholar
Kim JY, Wu Y, Smas CM. Characterization of ScAP-23, a new cell line from murine subcutaneous adipose tissue, identifies genes for the molecular definition of preadipocytes. Physiol Genomics. 2007;31(2):328–42.
Article
PubMed
CAS
Google Scholar
Takasaki M, Satsu H, Shimizu M. Physiological significance of the taurine transporter and taurine biosynthetic enzymes in 3T3-L1 adipocytes. Biofactors. 2004;21(1–4):419–21.
Article
CAS
PubMed
Google Scholar
Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nat Commun. 2015;6:6794.
Article
CAS
PubMed
Google Scholar
Hou X, Wang Z, Ding F, He Y, Wang P, Liu X, et al. Taurine transporter regulates adipogenic differentiation of human adipose-derived stem cells through affecting Wnt/β-catenin signaling pathway. Int J Biol Sci. 2019;15(5):1104–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim KS, Jang MJ, Fang S, Yoon SG, Kim IY, Seong JK, et al. Anti-obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high-fat diet-induced obese mouse model. Amino Acids. 2019;51:245–54.
Article
CAS
PubMed
Google Scholar
Meyer DM, Brei C, Bader BL, Hauner H. Evaluation of maternal dietary n-3 LCPUFA supplementation as a primary strategy to reduce offspring obesity: lessons from the INFAT trial and implications for future research. Front Nutr. 2020;7:156.
Article
PubMed
PubMed Central
Google Scholar
Ballman KV, Grill DE, Oberg AL, Therneau TM. Faster cyclic loess: normalizing RNA arrays via linear models. Bioinformatics. 2004;20(16):2778–86.
Article
CAS
PubMed
Google Scholar
Meyer SU, Kaiser S, Wagner C, Thirion C, Pfaffl MW. Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs - a comparative study. PLoS One. 2012;7:e38946.86.
Google Scholar
Wang B, Howel P, Bruheim S, Ju J, Owen LB, Fodstad O, et al. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS One. 2011;6:e17167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koenker R, Hallock KF. Quantile Regression. J Econ Perspect. 2001;15:143–56.
Article
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexiou P, Maragkakis M, Papadopoulos GL, Simmosis VA, Zhang L, Hatzigeorgiou AG. The DIANA-mirExTra web server: from gene expression data to microRNA function. PLoS One. 2010;5(2):e9171.
Article
PubMed
PubMed Central
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Rubio-Aliaga I, Roos B, Sailer M, McLoughlin GA, Boekschoten MV, van Erk M, et al. Alterations in hepatic one-carbon metabolism and related pathways following a high-fat dietary intervention. Physiol Genomics. 2011;43(8):408–16.
Article
CAS
PubMed
Google Scholar